81331 Rev 01 Nov 2010

Instruction Manual

DELTA4000

12-kV Insulation Diagnostic System

HIGH VOLTAGE EQUIPMENT Read this entire manual before operating.

Megger.

Valley Forge Corporate Center 2621 Van Buren Avenue Norristown, PA 19403-2329 U.S.A.

610-676-8500

www.megger.com

DELTA4000 12-kV Insulation Diagnostic System

Copyright© 2010 by Megger. All rights reserved.

The information presented in this manual is believed to be adequate for the intended use of the product. If the product or its individual instruments are used for purposes other than those specified herein, confirmation of their validity and suitability must be obtained from Megger. Refer to the warranty information below. Specifications are subject to change without notice.

WARRANTY

Products supplied by Megger are warranted against defects in material and workmanship for a period of one year following shipment. Our liability is specifically limited to replacing or repairing, at our option, defective equipment. Equipment returned to the factory for repair must be shipped prepaid and insured. Contact your MEGGER representative for instructions and a return authorization (RA) number. Please indicate all pertinent information, including problem symptoms. Also specify the serial number and the catalog number of the unit. This warranty does not include batteries, lamps or other expendable items, where the original manufacturer's warranty shall apply. We make no other warranty.

The warranty is void in the event of abuse (failure to follow recommended operating procedures) or failure by the customer to perform specific maintenance as indicated in this manual.

Megger.

Valley Forge Corporate Center 2621 Van Buren Ave Norristown, PA 19403-2329

610-676-8500 (Telephone) 610-676-8610 (Fax)

www.megger.com

Table of Contents

1	Introduction	1
	Receiving Instructions	1
	General Information	1
2	Safety	3
	Precautions	3
	Warning and Caution Notices	5
3	Specifications	7
č	Technical Specifications	7
	Test Modes	
	Maximum Specimen Capacitance	11
	Safety Features	12
	Accessories	13
	Included Accessories	13
	Optional Accessories	
	Optional Accessories	
1	Controls Indicators and Connectors	15
4	Control Unit Side Danel	15
	Uigh Voltage Unit Connector Denel	1J 10
	Thigh voltage Ohn Connector Paner	10
5	Sotup and Operation	10
5	Setup and Operation.	19
	Salety Precautions	19
	Setup	19
6	Dalta Control Uson Interface	25
0	Lata dontroi User Interiace	
	Uperation	
	lest Mode.	
	USI mode.	
	GSI mode.	
	Test Mode Examples	
	Two winding transformer test	
	Three winding transformer test	
	Frequency and Temperature	29
	Test Type	
	Voltage Control	
	Start and Stop	
	Oscilloscope	32
	Results	
	Indicators	
	Menu	
	Settings	35
	General	
	Power Factor/Tan-delta	
	Excitation Current	

Auto tip-up Test		
Results		
Frequency Sweep		
Manual		
Language		
Graph		
Log		
7 PowerDB User Interface		
Introduction		
Minimum Recommended	d System	
Software Installation	-	
Using Delta4000 with Po	owerDB	
8 PowerDB Test Forms		
General		
Input fields		
Transformer Configur	ration	
Measurement Frequer	ו כ ע	
27600 – Potential Transf	ormer	
Basic Form Information		
Testing		
Transformer Overall Tes	Sts	
Supplemental Tests		
Bushing Tests		
Bushing Hot Collar		
Multiple Ouick Tests		
27610 – Current Transfo	ormer	
Basic Form Information		
Testing		
Transformer Overall Tes	sts	
Hot Collar Tests		
Multiple Ouick Tests		
91510 – Miscellaneous E	auipment	
Basic Form Information		
Description of Tests		
92500 - Air-Magnetic Cit	rcuit Breaker form	
Basic Form Information		
Description of Tets		
Circuit Breaker Overa	11 Tests	
Diagnostic Tests		
92510 - Oil Circuit Break	ser form	
Basic Form Information		61
Description of Tests		62
Circuit Breaker Overa	ll Tests	62
Bushing and Oil Tests		62
92520 - SE6 Dead Tank	Circuit Breaker form	63
Basic Form Information	Siteat Diearer 101111	
Description of Tests		6.0 6.1
Circuit Breaker Overa	11 Tests	
Bushing Tests	II 10000	

Diagnostic Tests	
92530- Vacuum Circuit Breaker	
Basic Form Information	
Description of Tests	
Circuit Breaker Overall Tests	
Bushing Tests	
93002 – Multiple Dissipation/Power Factor Quick Test	
93500 – Two-Winding Transformer	
Basic Form Information	
Description of Tests	
Transformer Overall Tests	
Bushing C1 Tests	
Oil Tests	
Bushing C2 Tests	
Surge Arresters	
Bushing Hot Collar Tests	
Exciting Current Tests	
Ratio Tests	
Multiple Ouick Tests	
94500 – Three-Winding Transformer	
Basic Form Information	
Description of Tests	
Transformer Overall Tests	
Bushing C1 Tests	
Oil Tests	
Bushing C2 Tests	
Bushing Hot Collar Tests	
Surge Arresters	
Turns Ratio Tests	
Exciting Current Tests	
Multiple Ouick Tests	
96005 – CABLES	
0 Delta 1310 Uson Interface	07
Top Denal	
Communications Dorts	00 00
4210 Lowetick	09
4510 Joystick	
Home Action Icons	90
Utility Icons	
Navigating the screen	
Action Jacons	
Action Icons	
10 Maintenance and Calibration	
Maintenance	
Calibration	
Troubleshooting	
General Guidelines	
Open Air Test	
Repair	

Introduction

Receiving Instructions

Check the equipment received against the packing list to ensure that all materials are present. Notify Megger of any shortage.

Examine the instrument for damage received in transit. If damage is discovered, file a claim with the carrier at once and notify Megger, giving a detailed description of the damage.

This instrument has been thoroughly tested and inspected to meet rigid specifications before being shipped. It is ready for use when set up as indicated in this manual.

General Information

The DELTA4000 is used for shop and field testing of high-voltage electrical insulating systems at test voltages up to 12 kV. Test results can be used to evaluate the nature and quality of electrical insulating materials and manufacturing processes to reveal contamination, fractures, punctures, and other defects that accompany the aging of insulation. The test set comprises of a control unit, a high-voltage unit, cables, and canvas carrying bags. Refer to the Specifications section for a list of included accessories.

Tests are made by measuring the capacitance and dissipation factor (power factor) of a specimen. The values measured will change when undesirable conditions exist, such as moisture on or in the insulation; presence of conductive contaminants in insulating oil, gas or solids; presence of internal partial discharges etc.

The test set measures insulation properties in high-voltage power equipment such as transformers, bushings, rotating machines, cables, circuit breakers, capacitors, surge (lightning) arresters etc. In addition the test set can also measure transformer excitation current and transformer turns ratio (with optional TTR capacitor).

Delta4000 makes all standard Ungrounded Specimen Tests (UST) and Grounded Specimen Tests (GST) on high-voltage apparatus and key features include:

- Two-piece design for easy transportation Rugged and robust and only 14+22 kg (31+48 lb)
- Performs all standard UST and GST tests
- Handling up to 15 mA interference current into any lead of the instrument or a signal to noise ratio of 1:20, secures stable readings and correct data even in the highest interference switchyards.
- Standard 50/60 Hz measurements as well as 1-500 Hz frequency sweep reveals more details in the insulation characteristics
- Advanced signal acquisition and noise suppression circuitry results in 25-50% shorter measurement times
- Intelligent temperature compensation (ITC) feature enables an accurate temperature correction of measurements taken at high and low temperatures. No more average table corrections but instead a true correction based on the actual type and condition of the insulation (standard tables also provided for comparison with previously measured data)
- Voltage Dependence Detection (VDD). Delta4000 will automatically detect if the test specimen has voltage dependence and suggest the user to do a tip-up test.
- Two operation modes; Form-based, automated testing with PowerDB or run your specific test manually controlled with Delta Control.
- Enhanced safety features with safety hand switches, foot switch and warning strobe light
- Optional resonating inductor provides capability of testing high capacitance samples at high voltage.

Safety

Precautions

The test set and the specimen to which it is connected are a possible source of high-voltage electrical energy and all persons making or assisting in tests must use all practical safety precautions to prevent contact with energized parts of the test equipment and related circuits. Also follow all local and company safety requirements. Persons actually engaged in the test must stand clear of all parts of the complete high-voltage circuit, including all connections, unless the test set is de-energized and all parts of the test circuit are grounded. Persons not directly involved with the work must be kept away from test activities by suitable barriers, barricades, or warnings.

Treat all terminals of high-voltage power equipment as a potential electric shock hazard. There is always the potential of voltages being induced at these terminals because of proximity to energized high-voltage lines or equipment. Always use a safety ground stick to ground the high-voltage conductor. A safety ground jumper must then be installed between all terminals of apparatus under test and ground. Always disconnect test leads from test specimen before attempting to disconnect them at the test set. The ground connection on the test set must be the first made and the last removed. Any interruption of the grounding connection can create an electric shock hazard.

This instrument operates from a single-phase power source. It has a three-wire power cord and requires a two-pole, three-terminal, live, neutral, and ground type connector. The voltage to ground from the live and neutral poles of the power source must be within the following rated operating voltage:

100-240 V ± 10 %, 50/60 Hz, 16A

Before making connection to the power source, determine that the instrument rating matches the voltage of the power source and has a suitable two-pole, three-terminal grounding connector.

The power input plug must be inserted only into a mating receptacle with a ground contact. Do not bypass the grounding connection. Any interruption of the grounding connection can create an electric shock hazard. Determine that the receptacle is properly wired before inserting the plug.

It is not possible to eliminate all potential hazards from, and in using, electrical test equipment. For this reason, every effort has been made to point out in this instruction manual the proper procedures and precautions to be followed by the user in operating this equipment and to mark the equipment itself with precautionary warnings where appropriate. It is not possible to foresee every hazard which may occur in the various applications of this equipment. It is therefore essential that the user, in addition to following the safety rules in this manual, also carefully consider all safety aspects of the test before proceeding.

- Safety is the responsibility of the user.
- Misuse of this high-voltage equipment can be extremely dangerous.
- The purpose of this equipment is limited to use as described in this manual. Do not use the equipment or its accessories with any device other than specifically described.
- Never connect the test set to energized equipment.
- Operation is prohibited in rain or snow.
- Do not use the test set in an explosive atmosphere.
- A qualified operator should be in attendance at all times while the test equipment is in operation.
- Observe all safety warnings marked on the equipment.
- Corrective maintenance must only be performed by qualified personnel who are familiar with the construction and operation of the test set and the hazards involved.
- Refer to e.g. IEEE 510 1983, "IEEE Recommended Practices for Safety in High-Voltage and High-Power Testing," for information.

As a routine safety procedure some users require that rubber gloves be worn, not only when making connections to the high-voltage terminals, but also when manipulating the controls.

High-voltage discharges and other sources of strong electric or magnetic fields may interfere with the proper functioning of heart pacemakers. Persons with heart pacemakers should obtain expert advice on the possible risks before operating this equipment or being close to the equipment during operation.

Warning and Caution Notices

Warning and caution notices are used throughout this manual where applicable and should be strictly observed. These notices appear in the format shown below and are defined as follows:

WARNING

Warning, as used in this manual, is defined as a condition or practice which could result in personal injury or loss of life.

CAUTION

Caution, as used in this manual, is defined as a condition or practice which could result in damage to or destruction of the equipment or apparatus under test.

Specifications

Technical Specifications

Input Power:	100-240 V \pm 10 %, 50/60 Hz, 16 A max		
Output voltage:	0 to 12 kV, continuously adjustable		
Test frequency range:	45-70 Hz (12 kV)		
	15-405 Hz (4 kV)		
	1-505 Hz (250 V)		
Output power:	3.6 kVA		
Output Current:	>100 mA, continuous output		
	>300 mA, up to 4 minutes		
	The output current capacity can be expanded to 4 A using the optional Resonating Inductor, catalog number 670600		
Measuring Ranges:			
Voltage:	25 V to 12 kV, 1 V maximum resolution		
Current:	0 to 5 A, 0.1 μ A maximum resolution		
	The measurement can be corrected to either 2.5 kV or 10 kV equivalents		
Capacitance:	0 to 100 μ F, 0.01 pF maximum resolution		
Inductance:	6H to 10MH, 0.1 mH maximum resolution		

Power Factor:	0 to 100%, 0.001% maximum resolution
Dissipation Factor:	0 to 100, 0.001% maximum resolution
Watt Loss:	0 to 2 kW, actual power, 0 to 100 kW when corrected to 10 kV equivalent. 0.1mW maximum resolution.
	The measurement can be corrected to either 2.5 kV or 10 kV equivalents.
Temperature Correction:	Intelligent temperature correction (ITC) from 5°C to 50°C test temperature to 20°C reference
	Standard tables for temperature corrections

Accuracy:

Voltage:	\pm (1% of reading + 1 digit)
Current:	\pm (1% of reading + 1 digit)
Capacitance:	$\pm (0.5\% \text{ of reading} + 1 \text{ pF})$
Inductance:	$\pm (0.5\% \text{ of reading} + 1 \text{ mH})$
Power Factor:	$\pm (0.5\% \text{ of reading} + 0.02\%)$
Dissipation Factor:	$\pm (0.5\% \text{ of reading} + 0.02\%)$
Watt Loss:	$\pm(1\% \text{ of reading} + 1\text{mW})$

Noise Immunity:

Electrostatic:	15mA induced noise into any test lead with no loss of measurement accuracy at maximum interference to specimen current of 20:1
Electromagnetic:	500 μ T, at 50 Hz in any direction

Computer Interfaces:

Printer:	USB
Communication:	Ethernet and USB
User Interface (Delta4310 on-board computer model):	8.4 in., full-color VGA, test forms on-screen view, full QWERTY keypad and navigational pushbuttons

Data Storage:

Internal computer:	Up to 100,000 data sets	
External:	Pending external computer and/or flash memory size	
Control Software:	PowerDB and Delta Control	
Safety Qualifications:	IEC/ANSI 61010-1	
Environment:		
Temperature:	Operating: -20 to +55° C	
	Storage: -50 to $+70^{\circ}$ C	
Relative Humidity:	Operating: 0 to 90% non-condensing	
	Storage: 0 to 95% non-condensing	
Shock and vibration:	ASTM D999.75	
EMC:	EN 61326-1	
Dimensions:		
Control Unit:	290 x 290 x 460 mm (not including handles)	
High Voltage Unit:	290 x 290 x 460 mm (not including handles)	

Weight:

Delta4100 Control Unit (to be used with external computer):	14kg (33lbs)
Delta4300 Control Unit (with on-board computer):	15kg (31lbs)
Delta4110 HV Unit:	22 kg (48lbs)
Standard cables:	15 kg (33lbs)

Test Modes

UST: Ungrounded Specimen Testing					
Test mode	Measure	Ground	Guard		
UST-R	Red	Blue			
UST-B	Blue	Red			
UST-RB	Red and Blue				
GST: Grounded Specimen Testing					
Test mode	Measure	Ground	Guard		
GST-GND	Ground	Red and Blue			
GSTg-R	Ground	Blue	Red		
GSTg-B	Ground	Red	Blue		
GSTg-RB	Ground		Red and Blue		

Delta4000 supports the following test modes:

Maximum Specimen Capacitance

Table 1 shows the maximum measurable specimen capacitance at various voltages and loading time. This can be increased up to 1.2 F at 10 kV (50 Hz) test voltage using the optional Resonating Inductor.

Table 1: Maximum Measureable Specimen Capacitance at 50/60Hz					
Test Volts	Maximum Capacitance (μF) (100 mA continuos		Maximum Capacitance (μF) (300 mA for 4 minutes)		
(kV)	SCIV	vice)			
	60 Hz	50 Hz	60 Hz	50 Hz	
0.025	11	13	32	38	
0.05	5.3	6.3	16	19	
0.1	2.6	3.2	7.9	9.5	
0.25	1.1	1.3	3.2	3.8	
0.5	0.53	0.63	1.6	1.9	
1	0.26	0.32	0.79	0.95	
2	0.13	0.16	0.40	0.48	
3	0.09	0.11	0.27	0.32	
4	0.065	0.080	0.20	0.24	
5	0.11	0.063	0.16	0.19	
6	0.044	0.055	0.13	0.16	
8	0.033	0.040	0.099	0.12	
10	0.027	0.032	0.080	0.095	
12	0.022	0.027	0.066	0.080	

Safety Features

Safety features include;

- External hand or foot (optional) interlock switches must be closed to energize high-voltage circuit.
- Dual ground required to energize high-voltage circuit.
- Circuit breaker for short-circuit protection.
- All controls at ground potential.
- Over-voltage protective devices prevent damage to test set in the event of specimen breakdown.
- Low-voltage inputs are grounded when the test set is turned off or between measurements.

Accessories

Included Accessories

High voltage lead: 21 m (70 ft), double shielded	30012-11
Measurement lead, color-coded red	5572-1
Measurement lead, color-coded blue	5572-2
Ground lead: 9 m (30 ft)	002-131
Mains cable 16A EU	7032-19
Mains cable 16A US	7032-20
Mains cable 16A UK	7032-21
Mains cable 16A no plug	7032-22
Safety hand switch, Interlock #1: 18 m (60 ft)	1001-850
Safety hand switch, Interlock #2: 2.5 m (8 ft)	1001-851
HV unit power cable, 1 m (3 ft)	2002-132
HV unit control cable, 1 m (3 ft)	2002-133
Ground lead cable, 1 m (3 ft)	2002-134
USB cable, 3 m (10 ft)	2002-135
Ethernet cable, CAT 5, 3 m (10 ft)	2002-136
Soft padded carrying case for control unit [1]	2001-766
Soft padded carrying case for HV unit [1]	2001-766
Soft case for HV cable	2001-507
Soft case for other cables/accessories	2001-506
User manual	81331
Application guide	81332
Warranty [1 year]	
PowerDB Advanced software with Delta Control	

Optional Accessories

Safety foot switch	1001-852
External strobe	Y37181
External strobe extension cable, 18 m (60 ft)	1001-853

Transport case, 2-piece design	
Case for control unit and accessories [1]	2001-746
Case for HV unit and accessories [1]	2001-746
Transport case, 3-piece design	
Case for control unit [1]	2001-791
Case for HV unit [1]	2001-791
Case for accessories [1]	2001-792
Transport cart / trolley	1001-530
Calibration box set for CAL4000	2002-137
Calibration standard	670500-1
Transit cases for calibration standard	670635
HV TTR capacitor, single phase (10 nF, 10 kV)	36610
HV reference capacitor (100 pF, 10 kV)	36610-1
HV reference capacitor (1000 pF, 10 kV)	36610-2
Carry case for capacitors	36610-CC
Capacitor kit (TTR cap, 2 ref caps, carry case)	36610-KIT2
Resonating inductor	670600-1
Thermal Pentax® printer, 120 V	36493-1
Thermal Pentax® printer, 240 V	36494-1-KIT
Thermal paper (8.5" x 11") for printer	36809-1
Thermal paper (A4) for printer	36809-2
Oil test cell	670511
Hot collar belts [3]	670505
Bushing tap connectors [2]	670506
External temperature and humidity probes	2002-138
USB bar code wand and software	36528
Accessory kit: hot collar straps [3], external temperature and humidity meters, .75" bushing tap connector [1], 1" bushing tap connector [1], mini bushing tap connectors [2], "J" probe bushing tap connector [1], 1 m (3 ft) non-insulating shorting lead [3], 2 m (6 ft) non-insulating shorting lead [3]	670501
Special length cables available upon request. Consult factory.	

Controls, Indicators, and Connectors

Control Unit Side Panel

Figure 1: Side Panel – Control Unit

HV ON	HV ON	Warning signal indicating that the HV unit is active
OPEN GROUND	OPEN GROUND	When lit, this yellow lamp indicates an open in double ground system or defective grounding of test set.
INTERLOCK 1 INTERLOCK 2	SAFETY INTERLOCK 1 and 2	Two plug receptacles for connecting external interlock switches. Two hand interlock switches and a foot switch are supplied; however, in the event that a hand interlock is replaced with a test area interlock, the system must be constructed so that the interlock switches are closed when the test area gate or gates are closed. The interlock wiring must be run as a twisted pair to minimize electromagnetic coupling into the system. This interlock system should be wired such that connection is made to the A and B sockets of the SAFETY INTERLOCK receptacle. When the interlock loop is opened the test is automatically terminated.
INPUT RED	INPUT RED	Plug receptacle for connecting the red low-voltage test lead.
	INPUT BLUE	Plug receptacle for connecting the blue low-voltage test lead.
	USB port	Receptacle for computer communication.
	Ethernet port	Receptacle for computer communication.
EXT INT PC PC	Ext-Int PC switch	Switch for selecting internal or external PC (functional on Delta4310 only, disabled on Delta4110). "Internal" connects the on-board PC to Delta via Ethernet, "External" means that you can operate Delta from an external computer.

STROBE	STROBE	Receptacle for connecting the warning strobe light
TEMP & SSRH	TEMP and %RH	Receptacle for connecting the temp and humidity sensor (optional accessory)
INDUCTOR	INDUCTOR	Receptacle for connecting the test set to an optional Resonating Inductor (Cat. No. 670600) for extended capacitance range.
	HV CONTROL	Receptacle for the control cable between the control and HV units
MAINS I I · ·	MAINS	Receptacle for connecting the test set to an AC power source as marked on panel.
TEST GROUND	TEST GROUND	Receptacle for connecting the test ground cable between the test set and ground (normally station ground) near the test object
	GROUND	This wing nut is for connecting an additional safety ground between the control and HV units or to ground external objects e.g. optional trolley
HV POWER	HV POWER	Receptacle for the power cable between the control and HV units

High Voltage Unit Connector Panel

Figure 2: Connector panel – HV Unit

	HV CONTROL	Receptacle for the control cable between the control and HV units
HV POWER	HV POWER	Receptacle for the power cable between the control and HV units
GROUND	GROUND	This wing nut is for connecting an additional safety ground between the control and HV units
•0	HV Output	Receptacle for the high voltage cable (located on the side exterior of the equipment box)

NOTE: The HV cable is connected on the other side of the unit. Note the sliding locker to secure the cable. Do NOT use force to plug in-out!

Setup and Operation

Safety Precautions

Warning

The output of this test set can be lethal.

As with any high-voltage equipment, caution must be used at all times and all safety procedures followed. Read and understand Section 2, Safety, before proceeding. Be sure that the test specimen is de-energized and grounded before making connections. Isolate power equipment to be tested from the high-voltage busbars and attach necessary grounds to floating busbars in accordance with standard company policy, observing all safety procedures. Make certain that no one can come in contact with the high-voltage output terminal or any material energized by the output. Be aware that when testing power cables high voltage will be present at the remote end of the cable. Use protective barriers if necessary. Locate the control unit and high-voltage unit in an area which is as dry as possible. Maintain adequate clearances between energized conductors and ground to prevent arc-over. Such accidental arc-over may create a safety hazard or damage the equipment being tested.

Setup

The following steps are a general guide for setting up the test set. Figure 6 shows a typical setup for testing inter-winding and ground capacitance on a three-phase delta-wye power transformer; Figure 7 shows a typical setup for making excitation current measurements on the same transformer. The test set controls and connectors are identified in Figures 1 through 5. Refer to the Application Guide for specific instructions on connecting this and other power equipment to the test set.

When making capacitance measurements on transformer windings always short each winding on itself with a jumper lead to eliminate winding inductance effect. The shorting wire is usually non-insulated and must not be in contact with any other insulated or non-insulated parts of the transformer. When making transformer excitation current measurements conduct all tests on high-voltage windings only. This reduces the required charging current. In load tap changers, set to fully raised or fully lowered position for routine tests.

WARNING

There is always the possibility of voltages being induced at the terminals of a test specimen because of proximity to energized high-voltage lines or equipment. A residual static voltage charge may also be present at these terminals. Ground each terminal to be tested with a safety ground stick, then install safety ground jumpers, before making connections.

Figure 6: Typical Test Setup for AC Insulation Testing of a Three-Phase Two-Winding Power Transformer

Figure 7: Typical Test Setup for Transformer Excitation Current Measurements

- 1. Locate the test set at least 6 ft (1.8 m) from the specimen to be tested.
- 2. Connect the test ground to a low impedance earth ground on the specimen (if possible). This should always be the first cable connected and last removed
- 3. Connect the control and power cables between the control and HV units. Make sure that the bayonet type plugs are fully locked on the receptacles.
- 4. Connect the measurement cable with the red colored boot to the INPUT RED receptacle. Make sure the connector locks to the receptacle. If required, connect the measurement cable with the blue colored boot to the INPUT BLUE receptacle.
- 5. Connect the external interlock cables or a test area interlock system to the INTERLOCK 1 and 2 receptacles. Make sure the plugs are fully seated and locked on the receptacles.

- 6. Connect the high-voltage cable to the high-voltage terminal of the high-voltage unit (be sure that the connector locks in place).
- 7. With the main breaker OFF, plug the input power cord into the test set power receptacle and into a three-wire grounded power receptacle having the appropriate voltage and current ratings.
- 8. When using a generator as a power source, note that the generator itself should be grounded to a suitable earth ground. If this is not done properly, the high-voltage circuit of the test set will be disabled. The voltage supplied to the Delta4000 is not critical but should be within the specified voltage range and frequency.
- 9. Connect the crocodile clip of the measurement cable to the desired terminal of the test specimen.
- 10. Connect the hook (or clip) of the high-voltage test cable to the desired terminal of the test specimen.
- 11. Remove all safety grounds from the specimen to be tested.
- 12. Start Delta4000 by closing the main breaker.

For Delta4110 with external computer:

13. Connect the Ethernet (or possibly USB, Ethernet is preferred) cable between Delta4110 and the computer

For using Delta Control SW:

- 14. Start Delta Control SW. A "connect to Delta" screen will appear. Select USB or Ethernet communication.
- 15. For TCP/IP (Ethernet) you need to search for the HW. A new screen will open and the SW will automatically detect the Delta address that you can select and connect to.
- 16. The Delta Control screen will appear.

For using Power DB SW:

17. Start Power DB SW

18. The connect procedure will appear when you start the first test.

Delta4310 with internal computer is internally connected to the Delta HW when the internal/external PC switch is set to "internal". In case you want to use Delta4310 with an external computer set the switch to "external" and connect the PC to the Ethernet or USB port. Pending what model of Delta4000 you are using and if testing is performed automatically with PowerDB or manual with Delta Control SW, the actual testing procedure will vary. The following sections describe how to use Delta4000 with external or internal computer using Delta Control and PowerDB SW.

Delta Control User Interface

Introduction

The Delta Control software is an intuitive manual user interface where every feature is easy to identify. The buttons look like regular buttons on a mechanical front panel making the user feel as if he is using the instrument in a manual mode. The software can be operated using a touch screen or mouse control simply by clicking on the buttons. You may also "tab" between buttons using the keyboard. The buttons changes its look as you push the button so it is easy to know which key or function that is activated. All regular functions can be reached from this main screen/panel. Some buttons activates a popup screen where specific values and/or configurations can be set.

The Manual Control SW can be used as a test setting console in PowerDB or started as a separate program outside PowerDB.

Operation

Test Mode

Delta 4000 offers a quick setting for available test modes.

The top line (UST-R in this case) defines and describes the selected test mode.

The second and third lines explain how the instrument is configured for the measurement. They have a different designation depending on if UST (Ungrounded Specimen Test) or GST (Grounded Specimen Test) measurements are conducted.

UST mode

Ground and Guard are internally connected. Red and Blue terminals are either internally connected to be measured or internally connected to Ground (and Guard). In UST mode, the center line refers to the terminal or terminals that are measured and the lower line refers to the terminal that is internally connected to Ground and therefore excluded from the measurement.

GST mode

The current returning from Ground is measured. The Red and Blue terminals are either connected to Ground to be included in measurement or Guard to be excluded from the measurement.

Test Mode Examples

Two winding transformer test

When UST-R is used for the CHL test, the HV output terminal is to be connected to the primary winding and the red terminal to the secondary winding. The blue terminal does not have to be connected in this case.

Three winding transformer test

When UST-R is selected for a CHL test, the HV output terminal is to be connected to the primary winding, the red terminal to the secondary winding and the blue terminal to the tertiary winding. The blue terminal is in this case grounded/guarded.

For CHT measurement UST-B should be selected. The blue terminal is now measured and the red is grounded. The time saving benefit is that the transformer can be tested without the need for reconnections.
Frequency and Temperature

This is where you specify at which test frequency you want to perform the test. This is in most cases the same as the network frequency (but if you would like to test at e.g. 55 Hz you simply enter 55). Note that "Line Frequency" in the setting tab must be set to actual line frequency, 50Hz or 60 Hz.

Insulation properties are temperature dependent and the test object temperature is a very important parameter. The average temperature of the test object insulation should be entered.

These two parameters need to be set in order to start a measurement.

Test Type

	TEST TYPE	
Pow	er Factor	
Excit	tation Current	
Auto) Tipup Test	
Freq	uency Sweep	
Man	ual	

Select which Test you want to perform. In the setting tab you set your preference for tan delta or power factor readings.

The available tests are:

Power Factor/Tan- Delta	Power Factor or Tan-Delta test is a semi automatic test sequence performed at a preset voltage and line frequency. The system will ramp up the voltage to the set voltage and measure the Power Factor or Tan-Delta and after the completed test, ramp voltage down and stop the test and present the result.
Excitation Current	An excitation current is a standard test that is helpful in determining winding or core problems in transformers.

Auto Tip-up Test	Tip-up testing is used for testing power components with voltage dependent dissipation factor (e.g. generators) or in case a voltage dependence is suspected and indicated by high VDF in Delta4000. The highest voltage level used is set on main page and the voltage per step is set on the settings page Voltage steps can be set on the settings page
Frequency Sweep	Frequency Sweep allows the user to perform a series of tests over a frequency range. The voltage level used is set on main page and the voltage per step is set on the settings page. Note that there are limitation of voltage levels at high frequencies and low frequencies below 45 Hz
Manual	This mode allows continuous manual control of output voltage.

Voltage Control

The voltage control has three sections.

The top section is the voltmeter that shows the voltage in real time. Under the voltmeter is a display showing the set voltage (target voltage). You can click on this display to enter the target voltage or increase or decrease it using the buttons in the centre control. Below the display area is a round control where you can manually adjust voltage up or down. The single arrows step up or down in steps of 100 volts while the buttons with two arrows steps up or down in steps of 1000 volts. The C button in the middle clears the selection.

Start and Stop

When you are ready to start measuring, press the Start button. In all modes except the Manual type, the measurement sequence is automatic and the result presented when finished. If you need to stop an ongoing measurement press the Stop button. Note: the Stop button stops the measurement smoothly, if stop by emergency reason, simply release the interlock in the interlock handle.

Note that the green light on the start button will not illuminate until both interlock switches are closed.

In manual mode you have a button for starting a measurement. The start button is used to activate the output. You can manually control output voltage using the Voltage control. You can record and store a value to the log at any time by pressing the Measure button.

Press Stop or "Esc"to stop the output voltage.

Oscilloscope

In the oscilloscope you can follow applied voltage (red) and a voltage proportional to measured current (white). Note that this feature is designed to be a signal monitor and not intended to be a measurement device. The display has auto scaling of amplitude and time axis.

Results

- U (kV)	
C (nE)	
O (Pr)	
• P (W)	
	- P(W) -

In the results panel you can see the result of the latest measurement.

Indicators

The indicators show if there are anything that prevents a measurement from starting. If the Interlock Open led is on, you have to close both switches before you can start a test. If the open ground led is on, you have to ensure that the ground potential of the test object and the instrument is the same. The measurement cannot start if any of these led's are turned on. The "greed", "yellow", "red" thermometer is related to internal instrument temperatures and %RH; Green is ok, yellow is warning and if red the unit will not operate. For more details open up the Status window click the Menu Status button.

Megger.

Menu

	MENU	
Settings	Graph	Log
Help	Status	Close

In the menu you can access various extra functions.

Settings	Access the default settings used in the program.			
Graph	Shows graph of performed measurements.			
Log	Show a log of measured values.			
Help	Shows a help file.			
Status	Accessing information about internal %RH, temperatures , serial numbers and SW/Firmware version.			
Close	Close/Shut down Delta Control			

Settings

A Test Settings - DLL:v1.0.704, FW:v1.0.0	
General Line frequency 50 Hz O Power factor Integration (s) Integration Integration Image: State of the state of	
Tan-Delta ● Frequency Variation (default) ● Line Sync Reversal 	Results 10 kV equivalent Actual Values Frequency Sweep Frequencies 470 320 160 80 32 16
Excitation Current Frequency Variation O Line Sync Reversal (default)	Manual None Frequency Variation Line Sync Reversal
Auto tipup Test kV/Step 2 Image: Street of the street of	Language English Factory Settings
	OK Cancel

The Test Settings dialog allows for user preference and test sequence settings. The user can also reset the software to factory default settings by pressing the Factory Settings button in the lower right corner.

<u>General</u>

Under the general section you can change the default line frequency. Specify if you want to display the values as power factor or tan-delta. You can also change the integration time between 3 and 200 seconds or set it to automatic.

Power Factor/Tan-delta

Here you can select either frequency variation (default) or line sync reversal for noise suppression

Excitation Current

Here you can select either frequency variation or line sync reversal (default) for noise suppression

<u>Auto tip-up Test</u>

Set the kV/step for the auto tipup test. The software will automatically increase the voltage by the increment set in this box until the entered test voltage selected in the main screen is reached.

You can also select either frequency variation or line sync reversal for noise suppression

Results

Specify if you want the measured values presented as either 10 kV equivalent or the actual measured values.

Frequency Sweep

Set frequencies at which the frequency sweep will be made.

<u>Manual</u>

Select the rejection mode to be used during manual measurements.

<u>Language</u>

Set the language for the user interface of the software.

The graph dialog shows graphs of the measured values.

The log shows all measured values from the performed tests.

The clear log button clears all measured values.

The Export CSV button makes is possible to export the log as a comma separated file for processing in other software or store for future reference. When exporting to CSV you can choose if you want to have a header or not and what type of decimal separator you want to use.

You may also mark suitable part of the log-fields and simply use cut (ctrl+c) and paste it into e.g. excel (ctrl+v).

7

PowerDB User Interface

Introduction

PowerDB Lite is a free, but limited capability, version of the PowerDB software tool that is designed specifically to control and/or extract data from Megger instruments. The primary difference between PowerDB Lite and PowerDB is that PowerDB is designed to work with other manufacturers' equipment and has field and office synchronization capabilities. PowerDB Lite will present your test data into a professional looking data form that can be sent to a printer or .pdf file distiller such as PDF995.

PowerDB Lite allows you to use a sub-set of the standard PowerDB forms that are appropriate for specific Megger instruments. PowerDB Lite detects the instrument and enables the appropriate form(s). Data is captured directly while using the test instrument. Completed data forms are saved as files to your computer.

Minimum Recommended System

Operating System:	Windows XP or later
RAM:	64 MB RAM minimum, 512+ MB RAM recommended
Processor:	300 MHz Pentium Class processor minimum, 1 GHZ or better recommended

Software Installation

To install PowerDB Lite, load the PowerDB Lite CD into your CD-ROM drive and follow the on-screen instructions.

1. Accept the terms of the License agreement.

PowerDB - InstallShield Wizard	×			
License Agreement Please read the following license agreement carefully.	K			
Press the PAGE DOW/N key to see the rest of the agreement.				
POWER DB, INC. SOFTWARE LICENSE AGREEMENT	<u> </u>			
READ THE FOLLOWING TERMS AND CONDITIONS BEFORE INSTALLING THE SOFTWARE. IF YOU DO NOT AGREE WITH THEM, PROMPTLY RETURN THE SOFTWARE AND THE ACCOMPANYING ITEMS (INCLUDING MANUALS) TO: POWER DB, INC. 4064 STATE HIGHWAY 6 SOUTH				
FOR A REFUND OF THE PRICE PAID.	-			
Do you accept all the terms of the preceding License Agreement? If you select No, the setup will close. To install PowerDB, you must accept this agreement.				
InstallShield < Back Yes	No			

2. Choose the destination location for the PowerDB Lite files.

3. Select Default Settings.

Default Setti	ngs		×
	Language:	American English	•
	Default Units:	1	
		Jimperiai	•
InstallShield -			
movanomora		< Back	Next > Cancel

4. InstallShield Wizard will complete the installation of PowerDB Lite. Click Finish to close the installation program.

PowerDB - InstallShield Wizard				
	InstallShield Wizard Complete Setup has finished installing PowerDB on your computer.			
	< Back Finish Cancel			

To install Delta Control, load the SW CD into your CD-ROM drive and follow the on-screen instructions.

Using Delta4000 with PowerDB

1. Start the program and select Delta4000 in the Instrument Setup screen. If you already have tested this object at an earlier occasion, open up this file instead using "Open Existing Results File". PowerDB is designed to save data from several tests on one object in same file. Please note that Delta Control SW must also be installed to be able to run Delta4000 and perform measurements. Viewing and reporting previous measurements can be done on a computer without a Delta Control installation and without connecting to the HW.

Select An Instrument			×		
Insulation	Transformers	Battery	Breaker		
S1-5005 / BM-25	TTR-550503	BITE2	OCR-xxxx		
MEG-10	TTR-3xx	BITE3	ODEN		
S1-552	MCT-16xx	TORKEL	Oil		
S1-1052	MTO-210	Relay	OTS60PB		
\$1,1054.7 \$1,554		PULSAR			
3110347 31 334	Power Factor	MPBT	Earth		
S1-5010	DELTA 2000	OVERVER	DET-xxx		
MIT-520	DELTA 3000	JVEINKEIT	- Microhometer		
MIT-1020	DELTA 4000	DMM 1	DIPO		
Please visit www.powerdb.com to learn about the benefits of upgrading to the full version of PowerDB. Select the Instrument to begin testing For technical support call 1-214-333-3201, 1-800-723-2861 x3519 or +44 1304 502102.					
Open Existing Results File Cancel					

2. Select a form to be used for the test.

Press F1 for form operation instructions)													
2008 M www.me	egger. ^{gger.com}		INSULATION TESTS TWO-WINDING TRANSFORMERS										
SUBSTATION			Sub1		POSITION _		Newtow	vn		PAGE	,		
EQPT. LOCAT	10N									DATE	2010-	07-16	
ASSET ID		ТЗ	AM	IBIENT TEMPE	RATURE _2	25 <u>°C</u>	HUMIDI	ту30	%	JOB #			
TEST EQUIPM	ENT USED		Delta4110		-	TESTED BY				O.P Rator			
MFR	XfmrLtd	(LASS	ONANJONAF	TYPE S	EALED			BU	SHING NA				
SER NO	12345	COOLANT	OIL RE/	SON Ac	ceptance	DSG S	SERIAL NUM	MFR.	CAT.#	TYPE/CLASS	ΚV	AMPS	YEAR
YEAR	2010	_ BL_	<u> </u>	IGHT	kq	1U							
10	YNd112U		WINDING MAT	RIAL	Cu	1V							
Ϋ́	ዮ				× •	100							
4		0.20	IMPED.	ANCE	<u> </u>	21							_
1N	v		WEA	THER		21							
100	10		PH	ASES	3	2/V							
Diagram	1 # <u>51</u> (IEC)					2N							

3. Enter nameplate/test object/test conditions data into the form.

- 4. When testing is ready to be performed, the test can be started by;
- Right-click the desired blue highlighted test number
- or press F2 when the actual test row is activated (highlighted in yellow)
- or for Delta4310 press the "Test" button when the actual test row is activated

A pop-up screen will appear with selected test parameters. Click the start button to start the test

			70													
ASSET	D0		- 0.0		1000											
			UE		4000											
TEATE																
TESTE	QUIPMENT USED						_			Confin	. Cabbin as					1
										Conin	n becangs					
						and Press START										
				STAR:	Г									CANCE	ïL	
ME	R Xfmritd															
SER N	O <u>12345</u>	co	q 🛏													
YE/	AR 2010															
										Tec	1 of 3					
	10 YNd11	211								103	.1015					
	Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-													
		The second														
		11														
	A	1 × .														
0	1N 🔨			T T	est Ma	ide:		GST	-GND							
1W~	~1V	1														
		2567		т	act LV			10.0	000							
-					SSURV.			10.0	000							
D	iagram # 51	(IEC)														
	VOLTAGE(kV) kv	8													
PRIMA	RY: 100 / 57	735 10														
0500	ND 40	100 10														
SECO	ND: 10	10	9													
TECT	ERECHENCY: 8															
IL31	FREGUENCT. 3	<u> </u>														
	Testa Colorado	utter E														
Select	rests: 🔽 🛛 Overa.	n rest	4													
	SavetoDTA J	5	3													
												1				
										н	iookun					
	1	/ Mutticale			Previ					TIL	stration				Next	
		- manufacto								110	stration					
												_				
TEST	INSULATION	TEST														
NO	TESTED	NODE						_	-			-				
											1.00	FACTOR				
1	Cup + Cui	OCT-OND					10.00					0975				
	FILE PHE			L .		3	10.00					0.575				
2	Cue	0000-00					40.00					0.075				
2	∼HG	OSIG-RE	"			3	10,00					0.3/5				
	0						40.00					0.075				
3	- UHL	UOT-R	н	1		6	10.00					0.975			I	
	0.1															
4	CHL		TE	ST 1 MI	US TES	T 2										
				1	1			_								
1 6	1 () o + () -	Locations		• ••	•		. coo l					0.075				

5. To change the settings of the Delta4000, use the "Settings" button or place the mouse on the test form background, right-click and then select "Power Factor Settings".

Settings
Show Diag Number 🔽
Standard IEC
Equivalent Reading Direct
Use PF or DF DF
%PF/%DF G-I Limit 1.000
%PF/%DF I-D Limit 0.500
Delta 4000 Settings
Test Frequency 50
%VDF Limit 0.050
Sweep Test Voltage (KV) 1
Sweep Plot Log X - Lin Y
Sweep Frequencies (i.e. 15 30 55 110 220 330 390)
500 320 160 80 32 16 8 4
Delta 2000/3000 Settings
Suppression On 📃 🛛 Manual Mode 🗌
OK

- 6. Saving the data
- a. Before the first test is performed, PowerDB will ask where to save your form with the measured data
- b. The Save As screen will allow you to specify a location and file name for your PowerDB Lite XML file.

Save As			? 🗙
Save in: 🗀	PowerDB	▼ ← €	r 🖽
File name:			Save
Save as type:	PowerDB XML File (*.PdbXml)	•	Cancel

7. Open a previously performed test by opening the file in your selected folder. A pop-up screen will appear, listing all measurements for this object, and you can open the individual measurement in PowerDB or perform a new test.

Open PowerDB XML file		×
Form name: 93500 - PF TWO-WIN To view or edit a set of results, select a test date and press the Open button. To remove a set of results, select a test date and press the Delete button. Press the New button to enter	DING TRANSFORMERS Test Date 2010-07-06 10:08:19	Open New Delete
another set of test results.	Undo Save	Close

- 8. Setting the Logos on the PowerDB form
- a. Select the Tools>Options menu item.
- b. The Logos section specifies paths to the left and right logos files to use.
- c. To change the left logo press the "..." button by the left logo path.
- d. The Open screen allows you to browse to a file location, select a .JPG or .BMP file, and press the Open button.
- e. Repeat steps (c) and (d) for the right logo path.
- f. Note that a logo will not be shown if the logo file path is blank or the file does not exist.
- g. Note after specifying the logo files the image will not be shown until the next time a form is opened (File>Open, or the File>New menu items).
- h. Note that the logos will look the best if the resolution of the file is 400 pixels wide by 240 pixels high. DPI is not important.

Options 🔀
Language
Measurements
Default Units: Metric 💌
Temperature Units: C
Logos
Left: C:\Program Files\PowerDB Inc\PowerDB\powerdb_megger_slug
Right: C:\Program Files\PowerDB Inc\PowerDB\your_company_logo.br
OK Cancel

- 9. Change language and units
- a. Select the Tools>Options menu item.
- b. Select the appropriate language in the dropdown menu.

Options		×
Language	InternationalEnglish 💌	
Measurements		
Default Units:	Metric	
Temperature Units:	°C _	
Logos		
Left: C:\Progr	am Files\PowerDB Inc\PowerDB\powerdb_megger_slug	1
Right: C:\Progr	am Files\PowerDB Inc\PowerDB\your_company_logo.br	
	OK Cancel	

8

PowerDB Test Forms

General

Input fields

There are a number of input fields in the various forms. Some are text e.g. site information, others are drop down lists where only the selected values are valid.

To move between input fields you can use "Tab", "Enter" and/or arrow buttons or use a mouse/pointer. If you have a computer with touch screen you may just point at the field. Use keyboard for input values.

Transformer Configuration

Selecting Tests

Most forms have a variable complexity. When the form is opened a typical selection of standard tests are presented. By activating or deactivating the test checkboxes the form can be expanded or reduced.

Select Tests: 🔽 Overall Test 🔀 Bushing C1 📝 Bushing C2 📄 Surge Arresters 📄 Hot Collar 📄 TTR 📄 Exciting Current 📄 Manual

Measurement Frequency

Single Frequency Tests

Measurement frequency is normally the same frequency as the power system e.g. 50 Hz in Europe and 60 Hz in USA. Select the default frequency in the Power DB settings pop-up screen.

Frequency Sweep

Delta4000 can also measure multiple frequencies in a "frequency sweep". Individual frequencies are defined in a list in PDB settings. The maximum frequency range is pending the test voltage as described in the following table.

Test Voltage	Maximum frequency
	range
12 kV	45-70 Hz
4 kV	15-405 Hz
2 kV	8-505 Hz
1 kV	4-505 Hz
500 V	2-505 Hz
250 V	1-505 Hz

Note: Do not select the power frequency or any multiple of power frequency in a frequency sweep, e.g. in 50 Hz networks avoid, 50, 100, 150... and in 60 Hz networks avoid 60, 120, 180...

Temperature Correction

Delta4000 offers two temperature correction methods;

Standard Temperature Correction Tables

This is the standard correction method based on tables for various components. For power transformers the table selection is based on manufacturing year, transformer type (sealed, free breathing etc), voltage and power rating. For bushings the table is selected by manufacturer and type.

SUBSTATION POSITION	P219						
EOPT.LOCATIONAMBENTTEMPERATURE	Delta Custem ICF Suggested Temp Corr Table [Table_11 Override Table Selected Table Name [Table_11 Description Table_11 Description						
MFR ABB CLASS FOA TYPE SEALED SERNO	Correction Factor Points °C °F K °C °F K 0 32 0.95 32 89.8 0.94 2 35.6 0.96 34 69.2 0.93 H 4 39.2 0.198 36 98.8 0.91						
H2 Dyn1 X2 WINDING MATERIAL OIL TEMP 12345 L OIL TEMP 125 °C OIL TEMP 125 °C MPEDANCE 56 WEATHER H1 PHASES 3	H 6 42.8 0.98 38 100.4 0.9 H 8 46.4 0.89 40 104 0.89 H 10 50 0.99 42 107.6 0.87 12 53.6 1 44 111.2 0.86 M 16 57.2 1.01 46 114.6 0.83						
NOLTACE (AVSI) NOLTACE (AVSI) NOLTACE (AVSI) NOLTACE (AVSI) PRIMARY: 120 100 481.13 5 3 Off Load	18 64.4 1 50 122 0.81 20 68 1 62 125.6 0.79 22 71.6 0.89 54 129.2 0.77 24 75.2 0.89 56 132.6 0.75 26 77.8 0.97 59 138.4 0.72						
TEST FREGUENCY: COMMENTS Select Tests: Ø Overall Test Ø Bushing C1 Ø Bushing C2 Surge Arresters Save to DTA Settings Recalculate Test Voltages Communications Log	30 88 0.95 OK Cancel						
Multiple Test TRANSFORMER OVERALL T	ESTS Individual Temp Comp						

Intelligent Temperature Correction, ITC

As a unique feature Delta4000 also offers ITC, Intelligent Temperature Correction. With ITC the actual temperature correction for a certain measurement object is estimated by measuring an additional frequency sweep after performing the standard single frequency measurement. The information from the sweep test is then used to estimate the correct temperature correction from measurement temperature to 20°C reference (patent pending).

Note:	<i>Temperature range for ITC is 5-50° measurement/insulation</i>
	temperature. The frequency range for performing ITC should be 2-500
	Hz. Selecting a higher low frequency will limit the temperature range.

Voltage Dependence Detection

Another unique feature in Delta 4000 is automatic Voltage Dependence Detection (patent pending). In every test, Delta4000 measures the harmonic content of the signal and based on this information it calculates a Voltage Dependence Factor, VDF. If this value is too high (default > 0.05) the number turns red, indicating a voltage dependence of the test object i.e. the dissipation factor is pending the test voltage. In this situation a tip-up (step voltage) test should be performed to verify and quantify the voltage dependence.

Γ	BUSHING C1 TESTS Individual Temp Comp															
	TE	ST		BUSHING	NAMEPLATE		TEST	TEST	Freq	CAPACITANCE	PO	WER FACTOR *	ž.	DIR	ECT	
	ND.	υ.	DSG	SERIAL#	POWER FACTOR	CAPACITANCE	MODE	RV.	Sweep	C (pF)	MEASURED	@ 20°C	CORR FACTOR	mA	WATTS	%VDF
		11	H1				UST-R	10.00		159.43	0.30			0.5005	0.0148	0.025
	HI.	12	H2				UST-R	10.00	L	159.90	0.43			0.5020	0.0216	0.054
	кv	13	НЗ				UST-R	10.00		159.83	0.29	0.28	0.953	0.5018	0.0147	0.026
		14	HO				UST-R	10.00								

27600 – Potential Transformer

23 	Megger megger.com	n			f	Your Company Logo	•									
SUBSTATION POSITION												E				
EQPT.LC	DCATION										DATE	≡ <u>2</u> 0	010-09-1	3		
ASSETIC	>				AMBIENT	AMBIENT TEMPERATURE HUMIDITY JOB #										
TEST EQ	UIPMENT USED							TESTE	ED BY							
📕 Has B	Bushings		Perform Hot	Collar Tests												
САТАНС							REAS	ом	ka		CI	LASS				
IMI			<u>%</u> 01													
				ыг <u>—</u>		ĸv										
TESTER	EQUENCY: 60		Settings		TRANG	CODMED	DIEBALL	тесто								
TEST	INSULATION	TEST	TES	TCONNECT	IONS BUSHI	NG		CAP.	% P	OWER FAC	TOR	DIR	ЕСТ			
NO.	TESTED	MODE	MODE	MODE	ENG	GND	GAR	UST	KV	(pF)	MEAS.	20°C	CORR.	mA	WATTS	IR
1		GST-GND	H1,H2	X1,Y1												
2		GSTg-R	H1	X1,Y1	H2											
3		GSTg-R	H2	X1,Y1	Н1				_							
4		UST-R	H1	X1,Y1		H2										
5		UST-R	H2	X1,Y1		H1			_							
6		GST-GND	H1,H2	X1,Y1	@2kV											
📿 Multip	ile Test				s	UPPLEMEN	TALTES	тз								
TEST	INSULATION	TEST	TES	CONNECTI	DNS (WINDIN	IGS)	TEST	CAP.	% P	OWER FAC	TOR	DIR	ECT	IR		
NU.	TESTED	MODE	ENG	GND	GAR	UST	kV	(pr)	MEAS.	20°C	CORR.	mA	WATTS			
7		UST-R	H1,H2	Y1		X1										
8		UST-B	H1,H2	X1		Y1										
9		GSTg-R	H1		H2,X1,Y1											
10		GSTg-R	H2		H1,X1,Y1											

Basic Form Information

The PF Potential Transformer form is used for power/dissipation factor testing high voltage potential transformers, those generally rated over 5kV. Nameplate information (serial number, ratings, etc.) should be entered which identifies the asset being tested, and general information regarding the test conditions (test date, weather conditions, etc.) should also be noted.

Labeling of windings and bushings vary from country to country and may also vary within a country based on manufacturing year and more. All description uses labeling H1, H2, H3, H0 for High side bushings. Equivalent labeling used are e.g. 1U, 1V, 1W, 1N or A, B, C, N. Corresponding labeling for other windings are e.g. X1, X2, X3, X0; 1U, 2V, 2W, 2N; a, b, c, n respectively Y1, Y2, Y3, Y0, 3U, 3V, 3W, 3N.

Testing

When testing is ready to be performed, the test can be started by;

Right-click the desired blue highlighted test number

or press F2 when the actual test row is activated (highlighted in yellow)

or for Delta4310 press the "Test" button when the actual test row is activated

and click "Start" on the pop-up screen or press enter key to start generating the test voltage.

The proper connections for the programmed tests are described below.

Bushing tests will only be performed on PT bushings that have test taps, usually those rated 15kV and above. Hot collar tests are generally performed on HV bushings that do not have test taps.

Transformer Overall Tests

Test 1 - This is a measurement of the overall insulation test on the PT primary winding. Short H1 and H2 together and connect HV cable. Short secondary windings X and Y together and connect Red or Blue lead. Test mode is GST-GND.

Test 2 - Cross check test on the primary overall insulation. Remove shorting lead on the primary winding. Connect HV cable to H1, Red lead to H2, and Blue lead to X/Y. Test mode is GSTg-R.

Test 3 - Cross check test on the primary overall insulation. Connect HV cable to H2, Red lead to H1, and Blue lead to X/Y. Test mode is GSTg-R.

NOTE Results of Test 2 added to Test 3 should be very close to Test 1 for Capacitance, Current, and Watts.

Test 4 - Excitation current test of PT primary winding. Remove shorting leads from all windings. Connect HV cable to H1, Red lead to H2, and connect one end of each low voltage winding to ground. Test mode is UST-R.

Test 5 - Excitation current test of PT primary winding. Remove shorting leads from all windings. Connect HV cable to H2, Red lead to H1, and connect one end of each low voltage winding to ground. Test mode is UST-R.

NOTE: Test 4 and Test 5 duplicate the same test so results should be identical.

Test 6 - This is a repeat of Test 1 (same connections) only performed at 2kV (if Test 1 was performed at 10kV).

Supplemental Tests

Test 7 - This tests the inter-winding insulation between primary (H) and secondary (X). Short H1 to H2 and short X and Y windings to themselves. Connect HV cable to H, Red lead to X and Blue lead to Y. Test mode is UST-R.

Test 8 - This tests the inter-winding insulation between primary (H) and secondary (Y). Short H1 to H2 and short X and Y windings to themselves. Connect HV cable to H, Red lead to X and Blue lead to Y. Test mode is UST-B.

Test 9 - This is a cross check test. Remove shorting lead from H1/H2. Connect HV lead to H1. Short X and Y windings together and connect to H2. Connect Red lead to H2. Test mode is Test mode is GSTg-R.

Test 10 - This is a cross check test. Remove shorting lead from H1/H2. Connect HV lead to H2. Short X and Y windings together and connect to H1. Connect Red lead to H1. Test mode is Test mode is GSTg-R.

Bushing Tests

Test 11 - This is the test of the C1 insulation on the H1 bushing (only performed if the bushing has a capacitance tap). All shorting leads must be removed. HV lead is connected to H1 and Red lead is connected to the test tap. Test mode is UST-R.

Test 12 - This is the test of the C1 insulation on the H2 bushing (only performed if the bushing has a capacitance tap). All shorting leads must be removed. HV lead is connected to H2 and Red lead is connected to the test tap. Test mode is UST-R.

CAUTION

Bushing test taps have very limited insulation and should generally be energized at reduced voltage levels. If the PT or bushing manufacturer does not specify a test voltage level use no more than 500 volts (0.5kV).

Test 13 - This is the test of the C2 insulation on the H1 bushing (only performed if the bushing has a capacitance tap). All shorting leads must be removed. HV lead is connected to the test tap and Red lead is connected to the H1 bushing. Test mode is GSTg-R.

Test 14 - This is the test of the C2 insulation on the H2 bushing (only performed if the bushing has a capacitance tap). All shorting leads must be removed. HV lead is connected to the test tap and Red lead is connected to the H2 bushing. Test mode is GSTg-R.

Bushing Hot Collar

Tests 15 to 26 - These tests measure the outer shell insulation of the bushings, including surface leakage and leakage current from the bushing surface through the insulating material to the center conductor. A conductive strap is placed around the bushing, below one of the skirts and connected to the HV lead. The Red lead is connected to the bushing conductor. Test mode is GST-GND.

Multiple hot collar tests can be performed on each bushing. For each test, the location of the strap should be clearly indicated on the form.

Multiple Quick Tests

Standards measurements may be complemented with additional measurements executed from the Multiple Quick Test sub-form selected as a new test or as manual measurements in the standard test forms. Check "Manual" in the select test boxes and a Multiple Quick Test table will be added at the end of the form.

In the field "INSULATION TESTED" you enter information on what to be tested, TEST MODE set/change the test mode, SUPPRESS set/change noise suppression mode.

It is also possible to use Delta Control for controlling the test by clicking the Delta Control button (above the table) in PowerDB form, Delta Control will send all data to be stored in the Multiple Quick Test table.

27610 – Current Transformer

B	Megger. CURRENT TRANSFORMER												Your				
www.i	megger.com	n										ĺ	Logo	J			
SUBSTAT	ION					P0	OSITION _				PAG	E					
EQPT. LOG											DAT	e2	2010-09-1	3			
ASSET ID	÷				AMBIENT	TEMPERAT		<u>"C</u> H		%	_ JOB	#					
TEST EQU	IPMENT USED					<u>(3</u>)		TESTED	BY								
CATALO	MFR YEAR REASON CLASS												_				
IMF	PEDANCE	8	% OI	L VOL.	L	- 18	mps		785								
INSULATIO	ON TYPE			BIL	K	7	TYPE	1.77	S	econdary O	hms						
				02-330 h (2 <u>0-</u>						,	1000000000 <u>0</u>						
		C1 % Pc C1 (ower Factor Capacitance			C:	2 % Powe C2 Cap	er Factor		_							
		C1 % Pc C1 (ower Factor Capacitance	CURRENT	RATIOS	C	2 % Powe C2 Cap	er Factor									
	1	C1 % Pc C1 (ower Factor Capacitance	CURRENT	RATIOS	c:	2 % Powe C2 Cap	er Factor		 			_				
		C1 % Pc C1 (ower Factor Capacitance	CURRENT	RATIOS	C	2 % Powe C2 Cap	acitance		 			_				
TEST FF	REQUENCY: 60	C1 % Pc C1 (Settings	CURRENT	RATIOS	c	2 % Powe C2 Cap	acitance					_				
TEST FR	REQUENCY: 60		Settings		RATIOS	C:	2 % Powe C2 Cap	acitance									
TEST FR	REQUENCY: 60		Settings		RATIOS RATIOS TRAN		2 % Powe C2 Cap	TESTS	PO\		PR %	DI	RECT				
TEST FF TEST NO.	REQUENCY: 00 INSULATION TESTED	C1 % Pc C1 ¢	Settings	CURRENT CURRENT ST CONNECT GND	RATIOS TRAN TRAN TONS BUSHING GAR		2 % Powe C2 Cap	TESTS	PON MEAS.	MER FACTO	R % CORR.	Di mA	RECT	IR			
TEST FF TEST NO.	REQUENCY: 00 INSULATION TESTED Overall	C1 % Pc C1 c C1 c	Settings TE ENG H1,H2	CURRENT CURRENT ST CONNECT GND	RATIOS TRAN TIONS BUSHING GAR	ISFORMER 3 UST	2 % Powe C2 Cap	TESTS	PO MEAS.	MER FACTO	R % CORR. 1.000	Di mA	RECT WATTS	- IR			
TEST FF TEST NO. 1 2	REQUENCY: 60 INSULATION TESTED Overall C1	C1 % Pc C1 c TEST MODE GST-GND UST-R	Settings TE ENG H1,H2 H1,H2 H1,H2	CURRENT CURRENT ST CONNECT GND	RATIOS TRAN TIONS BUSHING GAR	LISFORMER I 3 UST TAP	2 % Power C2 Cap	TESTS	POI MEAS.	VER FACTO	R % CORR, 1.000 1.000	Di mA	RECT WATTS	- IR			
TEST FF TEST NO. 1 2 3	REQUENCY: 00 INSULATION TESTED Overall C1 C2	C1 % Pc C1 c TEST MODE GST-GND UST-R GSTg-R	Settings ENG H1,H2 H1,H2 TAP	CURRENT CURRENT ST CONNECT GND	RATIOS TRAN TIONS BUSHING GAR GAR H1,H2	ISFORMER 3 UST TAP	2 % Powe C2 Cap	TESTS	POX MEAS.	AVER FACTO	R % CORR. 1.000 1.000 1.000	Di mA	RECT WATTS	IR			
TEST FF TEST NO. 1 2 3 4	REQUENCY: 60 INSULATION TESTED Overall C1 C2 Overall at 2kV	C1 % Pe C1 0 TEST MODE OST-GND UST-R GST-GND	Settings ENG H1,H2 H1,H2 H1,H2 H1,H2 H1,H2 H1,H2 H1,H2	CURRENT CURRENT ST CONNECT	RATIOS TRAN TIONS BUSHING GAR H1,H2 @2kV	ISFORMER 0 0 UST TAP	2 % Power C2 Cap	TESTS	PO MEAS.	AVER FACTO	R % CORR. 1.000 1.000 1.000 1.000	DI mA	RECT WATTS				
TEST FR TEST NO. 1 2 3 4 5	REQUENCY: 00 INSULATION TESTED Overall C1 C2 Overall at 2kV	C1 % Pc C1 c TEST MODE GST-GND UST-R GST-GND GST-GND GST-GND	Settings ENG H1,H2 H1,H2 H1,H2 H1,H2 H1,H2	CURRENT CURRENT ST CONNECT GND	RATIOS TRAN TIONS BUSHING GAR H1,H2 @2kV	UST TAP	2 % Powe C2 Cap	TESTS	POU MEAS.		R % CORR, 1.000 1.000 1.000 1.000 1.000	DI mA	RECT WATTS				

Basic Form Information

The PF Current Transformer form is used for power/dissipation factor testing high voltage current transformers, those generally rated over 5kV. Power factor testing is normally not conducted on doughnut style current transformers.

Nameplate information (serial number, ratings, etc.) should be entered which identifies the asset being tested, and general information regarding the test conditions (test date, weather conditions, etc.) should also be noted.

Labeling of windings and bushings vary from country to country and may also vary within a country based on manufacturing year and more. All description uses labeling H1, H2, H3, H0 for High side bushings. Equivalent labeling used are e.g. 1U, 1V, 1W, 1N or A, B, C, N. Corresponding labeling for other windings are e.g. X1, X2, X3, X0; 1U, 2V, 2W, 2N; a, b, c, n respectively Y1, Y2, Y3, Y0, 3U, 3V, 3W, 3N.

Testing

When testing is ready to be performed, the test can be started by;

- Right-click the desired blue highlighted test number
- or press F2 when the actual test row is activated (highlighted in yellow)
- or for Delta4310 press the "Test" button when actual test row is activated

and click "Start" on the pop-up screen or press enter key to start generating the test voltage.

The proper connections for the programmed tests are described below.

Bushing tests will only be performed on CT bushings that have test taps, usually those rated 15kV and above. Hot collar tests are generally performed on HV bushings that do not have test taps.

Transformer Overall Tests

Test 1 - This is a measurement of the overall insulation test on the CT primary winding. Short H1 and H2 together and connect HV cable. Short secondary winding X together and connect to Ground. Test mode is GST-GND.

Test 2 - This is a measurement of the C1 insulation of the CT. This test is only performed if the CT main bushing has a capacitance or test tap. The HV cable remains connected to the H winding (which can remain shorted together) and the LV Red lead is connected to the test tap. Test mode is UST-R.

Test 3 - This is a measurement of the C2 insulation of the CT. This test is only performed if the CT main bushing has a capacitance or test tap. The HV cable is connected to the test tap and the LV Red lead is connected to the H winding (which can remain shorted together). Test mode is GSTg-R.

\triangle

CAUTION

Bushing test taps have very limited insulation and should generally be energized at reduced voltage levels. If the CT or bushing manufacturer does not specify a test voltage level use no more than 500 volts (0.5kV) for test 3.

Test 4 - This is a repeat of Test 1 (same connections) only performed at 2kV (if Test 1 was performed at 10kV).

Test 5 - This test is available as a Miscellaneous Test that can be performed on the primary (H) winding of the CT for further investigation of unusual readings, if necessary. The test mode is GST-GND.

Test 6 - This test is available as a Miscellaneous Test that can be performed on the primary (H) winding of the CT for further investigation of unusual readings, if necessary. The test mode is GST-GND.

Hot Collar Tests

12 test lines are provided on this form for Hot Collar Tests on the primary bushing(s), if desired.

These tests measure the outer shell insulation of the bushings, including surface leakage and leakage current from the bushing surface through the insulating material to the center conductor. A conductive strap is placed around the bushing, below one of the skirts and connected to the HV lead. The Red lead is connected to the bushing conductor. Test mode is GST-GND.

Multiple hot collar tests can be performed on each bushing. For each test, the location of the strap should be clearly indicated on the form.

Multiple Quick Tests

Standards measurements may be complemented with additional measurements executed from the Multiple Quick Test sub-form selected as a new test or as manual measurements in the standard test forms. Check "Manual" in the select test boxes and a Multiple Quick Test table will be added at the end of the form.

In the field "INSULATION TESTED" you enter information on what to be tested, TEST MODE set/change the test mode, SUPPRESS set/change noise suppression mode.

It is also possible to use Delta Control for controlling the test by clicking the Delta Control button (above the table) in PowerDB form, Delta Control will send all data to be stored in the Multiple Quick Test table.

91510 – Miscellaneous Equipment

saver.com	ve to DTA				FOWER	FACT		ESIS		ĩ	Company . Logo	Ĵ		
SUBSTATION	33TATION POSITION										E			
											2010-09-13			
ASSET ID														
					_	TESTE	рвү							
MANUFACTURER	SE	RIAL 		YEAR OF MFR MFR. LOCATION BIL AMPS (#OF STYLE # _	PHASES .			
			TEST	Test	L (H)	POWER FACTOR %			DIR	ECT				
NO TESTED	TEST MODE SI	JPPRESS.	KV	Freq	CAP.(pF)	MEAS.	20° C	CORR.	mA	WATTS	%VDF	R		
	LIST-R	Freg. Var.												

Basic Form Information

The PF Miscellaneous Equipment form is used for power factor/dissipation factor testing any type of electrical equipment, especially those types where a specific test form is not available. It allows flexibility in the number of tests that are performed, as well as allowing the user to select the specific test mode necessary for any testing situation.

Examples of the type of equipment testing that can be documented on this form include:

- Spare bushings
- High voltage insulators
- Lightning arresters
- Coupling capacitors (CCVT)
- Oil samples

In using the Miscellaneous Equipment form, the user accepts the responsibility of knowing how to properly connect and test the chosen piece of electrical equipment.

Apparatus nameplate information (serial number, ratings, etc.) may be documented to identify the asset being tested, and general information regarding the test conditions (test date, weather conditions, etc.) should also be noted. Liberal use of the COMMENTS field at the bottom of the form is recommended for documenting this information.

Description of Tests

Once the equipment to be tested has been properly connected to the HV lead, LV measuring leads and ground, the desired test mode must be selected before proceeding. The field "INSULATION TESTED" you enter information what to be tested, TEST MODE set the test mode, SUPPRESS set Suppression on/off (D2000/D3000) or if method select method Line Sync (Line Sync Polarity Reversal) or Freq. Var. (Frequency Variation) method should be used in Delta 4000

Measurements may be executed from the Multiple Quick Test sub-form or from Delta Control (Delta Control, only Delta 4000). If Delta Control is opened from the Delta Control button in PowerDB form, Delta Control will send all data to be stored in the Multiple Quick Test Sub-form.

Once the desired test mode is chosen, the test sequence is initiated by;

- Right-click on the desired blue highlighted test number
- or press F2 when the actual test row is activated (highlighted in yellow)
- or for Delta4310 press the "Start" button when actual test row is activated

and click "Start" or "enter" on the pop-up screen to start generating the test voltage.

The test set will perform the selected test and place the results into the proper fields for that test line. As additional tests are desired and setup, the test table will grow to accommodate them.

92500 - Air-Magnetic Circuit Breaker form

en 2	Press F1 for form operation instructions) Image: Megger. AIR-MAGNETIC CIRCUIT BREAKERS CAPACITANCE and POWER FACTOR TESTS														}		
SUBSTATION POSITION											PAG	PAGE					
EQP1	LOCATIO	DN NC											_ DATE	date2010-09-13			
ASS	ET ID					A	MBIENT T	EMPERAT	URE _	<u>*C</u> +		%	JOB;	¥			
TEST	TEST EQUIPMENT USED TESTED BY																
SERI													F				
CIRC	UIT				- 0100	AMPS.				DSG SERIAL NU	JM MER	KV AMPS	YEAR				
MFR					_	KV [1							
MFR	YEAR	LOC			_	BIL				2							
TYPE					_ INT. R	ATING _				3	_				_		
MEC.	DESIGN				- INT. M	ЕЛІЛМ — ГЕІСНТ			KO	4					_		
REAS	SON				- WEA	ATHER -			100	6							
TAN	<s< td=""><td>CONTROL VOL</td><td>TS</td><td></td><td>TANK</td><td>TEMP</td><td></td><td></td><td>°C</td><td>PHASE NAMES</td><td>_</td><td colspan="6"></td></s<>	CONTROL VOL	TS		TANK	TEMP			°C	PHASE NAMES	_						
		_	_		COU	NTERS _				LAYOUT							
TES	T FREQU	IENCY 😥		Settin	9 5]											
				-			CIRCUIT I	BREAKER	OVERAL	L TESTS							
св	TEST	INSULATION	Ph.	TEST	TEST	CONNECTIONS BUS		HING	TEST	CAPACITANCE	POV	VERFACIO	NR %	DIF	RECT	IR	
	NO.	TESTED		WODE	ENG	GND	GAR	UST	ĸ٧	C (PF)	MEAS.	20°C	CORR.	mΑ	WATTS		
	1	C _{1G}		GST	1		2						1.000				
	2	C _{2G}		GST	2		1						1.000				
Z	3	C3G		GST	3		4						1.000				
OPI	4	C _{4G}		GST	4		3						1.000				
	5	C _{5G}		GST	5		6						1.000				
	6	C _{6G}		GST	6		5						1.000				
	7	C ₁₂		UST	1			2					1.000				
Ш.	8	C34		UST	3			4					1.000				
ō	9	C56		UST	5			6					1.000				

Basic Form Information

The PF Air-Magnetic Circuit Breaker form is used for power factor testing medium voltage air magnetic circuit breakers. These are normally encountered in 5kV and 15kV switchgear.

Test modes are mentioned in the description of tests below. However, the test form is pre-programmed with the appropriate test modes to automatically be performed.

Description of Tets

Circuit Breaker Overall Tests

Prior to the overall insulation tests, remove the breaker from its cubicle or cell. Tests may be performed either with or without arc chutes installed. This should be noted in the Comments field for future reference.

The breaker will remain in the open position for all tests.

Tests 1 to 6 (C_{1G} , C_{2G} , C_{3G} , C_{4G} , C_{5G} , C_{6G}) - These are measurements of the ground insulation of each pole of the breaker with the breaker in the open position. Test 1 is indicated by Insulation Tested C_{1G} , Test 2 by Insulation Tested C_{2G} , etc. The HV cable is connected to each pole, in turn, with all other poles floating (no connection). The breaker frame must be connected to station ground. Test mode is GST-GND.

Test 7 (C_{12}) - This is a measurement of the insulation between the poles on Phase 1 or Phase A, and is indicated by Insulation Tested C_{12} . The HV cable is attached to Pole 1 and the LV Red lead is attached to Pole 2. All other breaker poles are left floating. This test is performed with the breaker open. Test mode is UST-R.

Test 8 (C_{34}) - This is a measurement of the insulation between the poles on Phase 2 or Phase B, and is indicated by Insulation Tested C_{34} . The HV cable is attached to Pole 3 and the LV Red lead is attached to Pole 4. All other breaker poles are left floating. This test is performed with the breaker open. Test mode is UST-R.

Test 9 (C_{56}) - This is a measurement of the insulation between the poles on Phase 3 or Phase C, and is indicated by Insulation Tested C_{56} . The HV cable is attached to Pole 5 and the LV Red lead is attached to Pole 6. All other breaker poles are left floating. This test is performed with the breaker open. Test mode is UST-R.

Diagnostic Tests

These tests provide flexibility for performing more diagnostic tests in the event that an area of concern presents itself. Each test line allows the operator to choose between test modes UST-R and/or GST-GND. A detailed description of the tests performed should be documented on the form, both in the Specimen/Connection field and the form Comments field.

	CIRCUIT BREAKER OVERALL TESTS																		
CB	T	ST	NSULATION	Dia	TEST	BUS	HINGS CO	S CONNECTIONS		TEST	CAP.	POW	POWER FACTOR %			DIRECT			
	1	40	TESTED	Pri.	MODE	BNG	BUS m	NS#	Ш	k∨	(pF)	MEAS.	20°C	CORR.	mΑ	WATTS	г		
		1	C _{1G}		GSTGND	1													
		2	C _{2G}		GSTGND	2													
Z		3	C _{3G}		GSTGND	3													
do		4	C _{4G}		GSTGND	4													
		5	C _{5G}		GSTGND	5													
		6	C _{6G}		GSTGND	6													
		7	C _{1G} + C _{2G}		GSTGND	182													
E SC		8	C _{3G} + C _{4G}		GSTGND	384													
10		9	C _{5G} + C _{6G}		GSTGND	586													
								I	1			1	I						
	BUSHING AND OIL TESTS																		
	NO.	NO.	SERIAL #	NAM	SPLATE % PF	CA)sg	Mode	KV -	(PF)	MEAS	20°C	CORR	mA	WATTS	IR		
	10	1	CERTIFIE IF		2011	- <u> </u>	·		UST			incrio.	200	oonat.					
6	-11	2							UST										
ž	12	3							UST										
μË	13	4							UST										
δ	- 14	5							UST										
	15	6							UST										
	- 16	1							GST										
ιn	17	2							GST										
ES	18	3							GST										
51	19	4							GST										
10	20	5		_			_	_	GST										
	21	6	T AN U (A A U	_	_	_	_		GST			_							
	22		TANK 1 OIL	_		_	_	_	UST			_							
ō	23		TANK 201L	-		_		_	UST			_							
	24		TANK SUL						UST										
$\begin{array}{c} \hline \\ \hline $													cipis are viex may or negative .						

92510 - Oil Circuit Breaker form

Basic Form Information

The PF Oil Circuit Breaker form is used for power factor testing medium and high voltage bulk oil circuit breakers. These are typically found in transmission and distribution substations.

Oil circuit breakers usually utilize condenser bushings with test taps which should be routinely tested whenever the overall insulation of the breaker is tested.

Test modes are mentioned in the description of tests below. However, the test form is pre-programmed with the appropriate test modes to automatically be performed.

Description of Tests

Circuit Breaker Overall Tests

Tests 1 to 6 are conducted with the circuit breaker in the open position. Tests 7 to 9 are conducted with the breaker in the closed position.

Tests 1 to 6 (C_{1G} , C_{2G} , C_{3G} , C_{4G} , C_{5G} , C_{6G}) - These are measurements of the ground insulation of each pole of the breaker with the breaker in the open position. Test 1 is indicated by Insulation Tested C_{1G} , Test 2 by Insulation Tested C_{2G} , etc. The HV cable is connected to each pole, in turn, with all other poles floating (no connection). The breaker frame must be connected to station ground. Test mode is GST-GND.

Test 7 ($C_{1G}+C_{2G}$) - This is a measurement of the insulation between Phase 1 (A) and ground, and is indicated by Insulation Tested $C_{1G}+C_{2G}$. This test is performed with the breaker closed. The HV cable is attached to either Pole 1 or Pole 2. All other breaker poles are left floating. Test mode is GST-GND.

Test 8 $(C_{3G}+C_{4G})$ - This is a measurement of the insulation between Phase 2 (B) and ground, and is indicated by Insulation Tested $C_{3G}+C_{4G}$. This test is performed with the breaker closed. The HV cable is attached to either Pole 3 or Pole 4. All other breaker poles are left floating. Test mode is GST-GND.

Test 9 ($C_{5G}+C_{6G}$) - This is a measurement of the insulation between Phase 3 (C) and ground, and is indicated by Insulation Tested $C_{5G}+C_{6G}$. This test is performed with the breaker closed. The HV cable is attached to either Pole 5 or Pole 6. All other breaker poles are left floating. Test mode is GST-GND.

Bushing and Oil Tests

Tests 10 to 15 - These are tests of the C1 insulation on the breaker bushings. The HV lead is connected to each bushing top terminal, in turn, and the LV Red lead is connected to the respective bushing test tap. Test mode is UST - MEAS RED, GND BLUE. At the completion of each test, the HV and Red leads are then moved to the next bushing to be tested.

Tests 16 to 21 - These are tests of the C2 insulation on the breaker bushings. The LV Red lead is connected to each bushing top terminal, in turn, and the HV lead is connected to the respective bushing test tap. Test mode is GSTg-R. At the completion of each test, the HV and Red leads are then moved to the next bushing to be tested.

CAUTION

Bushing test taps have very limited insulation and should generally be energized at reduced voltage levels. If the bushing or breaker manufacturer does not specify a test voltage level use no more than 500 volts (0.5kV). **Tests 22 to 24** - These are tests of oil samples taken from each phase of the breaker (either 1 or 3). Each sample of oil is tested separately in an accessory oil test cell. Follow oil cell instructions for details on cell cleaning and filling. Record the temperature of the oil sample in the Nameplate section at the top of the form. Test mode is UST-R.

TESI NO NSULATION TESTED TES' KV PACITA C (PF) ENG GND MEAS. CORR GST 1.000 1.000 1.000 GST 2 C₂₆ C3G C46 GST 4 1.000 1.000 C5G CRO GST 6 1.000 1.000 C12 C24 UST 3 4 1.000 UST 1.000 C56 C16 + 0 182 GST GST 38,4 1.000 C3G + C40 GST 586 1.000 C5G + C6 TES kV NO. BUSHING SERIAL# PACITAN C (PF) TEST BL UST UST UST TAP 2 UST TAP TAP 4 UST 4 TAP UST 5 UST TAP MAGNOSTIC TEST TEST SPECIMEN AND CONNECTION MODE W. CAPACITANCE MEAS. 20º C CORR UST UST US. UST USI UST UST NOULATION RATING:G-GOOD akeropen...... 3, 4, 5, 6). losed: kank lesis NOTE: No. In ENG column is bushing energized, in Tests 1 through 6, 10, 11 and 12. All other bushings must be floating.

92520 - SF6 Dead Tank Circuit Breaker form

Basic Form Information

The PF SF6 Dead Tank Circuit Breaker form is used for power factor testing medium and high voltage SF6 circuit breakers. These are typically found in outdoor transmission and distribution substation applications. Dead tank circuit breakers are those whose high voltage interrupting chamber is housed in an earth grounded enclosure or tank.

SF6 dead tank circuit breakers occasionally utilize condenser bushings with test taps which should be routinely tested whenever the overall insulation of the breaker is tested. If so equipped, all bushing nameplate information should be documented on the test form.

Test modes are mentioned in the description of tests below. However, the test form is pre-programmed with the appropriate test modes to automatically be performed.

Description of Tests

Circuit Breaker Overall Tests

Test 1 (C_{1G}) - This is a measurement of the ground insulation on Pole 1 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 2 (C_{2G}) - This is a measurement of the ground insulation on Pole 2 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 3 (C_{3G}) - This is a measurement of the ground insulation on Pole 3 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 4 (C_{4G}) - This is a measurement of the ground insulation on Pole 4 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 5 (C_{5G}) - This is a measurement of the ground insulation on Pole 5 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 6 (C_{6G}) - This is a measurement of the ground insulation on Pole 6 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 7 (C_{12}) - This is a measurement of the insulation on Phase 1 (A) between Pole 1 and Pole 2 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal of either Pole 1 or 2. The LV Red lead is connected to the other Pole. The frame of the breaker must be connected to station ground. Test mode is UST-R.
Test 8 (C_{34}) - This is a measurement of the insulation on Phase 2 (B) between Pole 3 and Pole 4 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal of either Pole 3 or 4. The LV Red lead is connected to the other Pole. The frame of the breaker must be connected to station ground. Test mode is UST-R.

Test 9 (C_{56}) - This is a measurement of the insulation on Phase 3 (C) between Pole 5 and Pole 6 with the circuit breaker in the open position. All other poles on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal of either Pole 5 or 6. The LV Red lead is connected to the other Pole. The frame of the breaker must be connected to station ground. Test mode is UST-R.

Test 10 $(C_{1G} + C_{2G})$ - This is a measurement of the ground insulation on Phase 1 (A) with the circuit breaker in the closed position. All other phases on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal of Pole 1 or 2. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 11 (C_{3G} + C_{4G}) - This is a measurement of the ground insulation on Phase 2 (B) with the circuit breaker in the closed position. All other phases on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal of Pole 3 or 4. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Test 12 $(C_{5G} + C_{6G})$ - This is a measurement of the ground insulation on Phase 3 (C) with the circuit breaker in the closed position. All other phases on the breaker will be floating (no connection). The HV cable will be connected to the bushing top terminal of Pole 5 or 6. No LV lead connection is required. The frame of the breaker must be connected to station ground. Test mode is GST-GND.

Bushing Tests

SF6 dead tank circuit breakers occasionally utilize condenser bushings with test taps which should be routinely tested whenever the overall insulation of the breaker is tested.

The table supplied may be used to measure the C1 insulation on condenser bushings, if so equipped. The HV lead is connected to each bushing top terminal, in turn, and the LV Red lead is connected to the respective bushing test tap. For all tests, test mode is UST-R. At the completion of each test, the HV and Red leads are then moved to the next bushing to be tested.

Diagnostic Tests

These tests provide flexibility for performing more diagnostic tests in the event that an area of concern presents itself. Each test line allows the operator to choose between test modes UST-R, and GST-GND. A detailed description of the tests performed should be documented on the form, both in the Specimen/Connection field and the form Comments field.

								CIRCUI	TBREAK	ER OVERALI	LTESTS						
	TE	ST	INSULATION	Dh	TEST	BU	SHINGCO	NNECTIC	DNS	TEOT		POW	ER FACTO)R %	DIR	ECT	ы
	N	0	TESTED	FII.	MODE	ENG	GND	GAR	UST	KV	C(PF)	MEAS.	20° C	CORR.	mA	WATTS	IN
	1		C _{1G}	А	GST	1								1.000			
		2	C _{2G}	A	GST	2								1.000			
Z,		3	C _{3G}	в	GST	3								1.000			
6	5 4	1	C _{4G}	в	GST	4								1.000			
		5	с ₅₆	С	GST	5								1.000			
	6	6	C _{6G}	С	GST	6								1.000			
		7	C ₁₂	А	UST	1			2					1.000			
L L L	1 5	3	C ₃₄	В	UST	3			4					1.000			
		9	C ₅₆	С	UST	5			6					1.000			
H	TEST BUSHING Ph.															-+	
	BUSHINGTESTS TEST BUSHING Ph. NO SERIAL # VID 10 1 VID																
	10	1			UST	1											
	40	2			UOT	2											
	12	3				3			TAP								
	13	4			Пот	4											
	14	5			иет	С											
	10	0			001	0			TAE								
DIAGRAM 1 2 4 TANK 1 TANK 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1																	

92530- Vacuum Circuit Breaker

Basic Form Information

The PF Vacuum Circuit Breaker form is used for power factor testing medium and high voltage vacuum circuit breakers. These are normally encountered above 5kV in both switchgear and outdoor substation applications.

Test modes are mentioned in the description of tests below. However, the test form is pre-programmed with the appropriate test modes to automatically be performed.

Description of Tests

Circuit Breaker Overall Tests

Prior to the overall insulation tests, remove the breaker from its cubicle or cell, if applicable.

The breaker will remain in the open position for all tests.

Tests 1 to 6 (C_{1G} , C_{2G} , C_{3G} , C_{4G} , C_{5G} , C_{6G}) - These are measurements of the ground insulation of each pole of the breaker with the breaker in the open position. Test 1 is indicated by Insulation Tested C_{1G} , Test 2 by Insulation Tested C_{2G} , etc. The HV cable is connected to each pole, in turn, with all other poles floating (no connection). The breaker frame must be connected to station ground. Test mode is GST-GND.

Test 7 (C_{12}) - This is a measurement of the insulation between the poles on Phase 1 or Phase A, and is indicated by Insulation Tested C_{12} . The HV cable is attached to Pole 1 and the LV Red lead is attached to Pole 2. All other breaker poles are left floating. This test is performed with the breaker open. Test mode is UST-R.

Test 8 (C_{34}) - This is a measurement of the insulation between the poles on Phase 2 or Phase B, and is indicated by Insulation Tested C_{34} . The HV cable is attached to Pole 3 and the LV Red lead is attached to Pole 4. All other breaker poles are left floating. This test is performed with the breaker open. Test mode is UST-R.

Test 9 (C_{56}) - This is a measurement of the insulation between the poles on Phase 3 or Phase C, and is indicated by Insulation Tested C_{56} . The HV cable is attached to Pole 5 and the LV Red lead is attached to Pole 6. All other breaker poles are left floating. This test is performed with the breaker open. Test mode is UST-R.

<u>Bushing Tests</u>

Most vacuum circuit breakers are not supplied with condenser bushings, except for those rated above 15kV.

The table supplied may be used to measure the C1 insulation on condenser bushings, if so equipped. For all tests, test mode is UST-R.

93002 – Multiple Dissipation/Power Factor Quick Test

Press I ASSE	F2 to execute a	test; Press I	F1 for HEL	P									
TEST FR	Dett	a Control	Show Console		Settings								
TEST	INSULATION	TEAT MODE	0	TEST	Test	L(H)	POW	/ER FACT	DR %	DIR	ECT		
NO	TESTED	TEST MODE	SUPPRESS.	KV	Freq	CAP.(pF)	MEAS.	20° C	CORR.	mA	WATTS	WVDF	R
1		UST-R	Freq.Var.										

- Enter the Asset ID
- Enter the temperature correction factor (TCF). If you do not know or want to correct for temperature please leave this value at 1
- Enter the optional description
- Enter test voltage or run the test with Delta Control
- Start the test

93500 – Two-Winding Transformer

23	Megge	r.			T١	NO-\	INSU	JLATION DING TR	N TES	STS FOF	RMEF	s			Your Company Logo	}
SUBST	ATION							POSIT	ION				Р	AGE		
EQPT.	LOCATION													ATE	2010-09	-13
ASSET							AMBIENT	IBMPERATURI	F	۹C	ньм	אחר	ـــــــــــــــــــــــــــــــــــــ	08#		
TEST E	QUIPMENT USE	ED								TE	STED BY					
				_					_							
MF SER N	R	co	CLASS DOLAN	ı <u> </u>	OIL	F	TYPE REASON	SEALED		G SE	RIALNUM	BU: MFR.	CAT.# T	PLATE (PE/CLASS	KV A	/PS YEAR
YE	AR ^H e Deci					_										
	^{5,,,,,}	Ŷ														
Į.	- \ *10															
н,	H ₃ NTELIANCE NO XI															
[)iagram # <u>5</u>	(ANSI)				_										
PRM	RY:	(V) N	(A R	ATED	1 #TAP 5	S NOMIN 3	NAL CHA	NGER TAP SET	TING							
SECO TESTE	ND: / REQUENCY: @			ገስለብ	l 1 NTS∙⊡											
				Ciolor												
Select	Tests: [∠] Overal aveto DTA	l Test	∠ <i>Bush</i> Setthas	ing Cl	' L∠ □ Decal	<i>Bushing</i> culate Test	C2	<i>Surge Arreste</i> Communicati	onston	Hot Co	llar [_		Exc t ing Clim	ent 🔝 Ma	nual	
		🗸 Multpi	e Test				TRAN	ISFORMER OV	ERALLTE	STS		Individual 7 TempC	emp Comp 📃 orr. Table <u>No</u>	ne		
TEST	NSLLATION	TEST	a	FEST LE.	AD ONS	TEST	FRED	GAPACITANCE		POWE	R FACTOR	2 X	DIF	RECT	%VDF	INSUL
1452	0 0	NUME:	HV I	€0 B	SLE GND	5.7	DATED.	op.)	NEASURE	0	@ 20°C	CORR FACTOR	лъ	WATTS		
2	Cuc	GST-GND GST-6RB	н	L .	G		⊢			_						
3	CHL	LET-R	н	ι.	G											
4	CHĽ		TEST	1 MINUS	TEST 2											
5	C _{LG} + C _{HL}	GST-GND	L	н	G											
6	CLG	GST9RB	L	н	G											
7	C _{HL}	LST-R	L	H	G											
9	Cuci		GHC N	INUS HI	BUSHINGS					+			-			
10	CLG		GLG N	INJS L E	BUSHINGS											

Basic Form Information

The PF Two-Winding Transformer form is used for power factor/dissipation factor testing medium and high voltage power transformers, generally those with at least one winding rated over 5kV.

Description of Tests

Transformer Overall Tests

Prior to the overall insulation tests, short all high side (H) bushings together and short all low side (L) bushings together, keeping both windings separated. Remove ground connections from neutral bushings.

Test 1 - This is a measurement of the insulation between the transformer high voltage winding and the transformer tank, plus the insulation between the high voltage winding and the low voltage winding, both measured in parallel. Connect the HV cable to the H winding and connect the Red lead to the X winding. Test mode is GST-GND.

Test 2 - This is a measurement of the insulation between the transformer high voltage winding and the transformer tank. Connections are exactly the same as for Test 1. Test mode is GSTg-RB.

Test 3 - This is a measurement of the insulation between the transformer high voltage winding and the low voltage winding. Connections are exactly the same as for Test 1 and 2. Test mode is UST-R.

NOTE:	Once Tests 1, 2 and 3 are completed, Line 4 will populate with values
	calculated by subtracting Test 2 from Test 1. This is applicable for
	values of capacitance, current and watts. Line 4 is a calculated
	comparison to the direct measurements of Test 3. Values on these two
	lines should be essentially the same. If they are not, re-check all
	connections and verify the proper operation of the test set. If Test 3 and
	Line 4 vary by more than 2%, the Insulation Rating (IR) will
	automatically populate with B (Bad).

Test 5 - This is a measurement of the insulation between the transformer low voltage winding and the transformer tank, plus the insulation between the low voltage winding and the high voltage winding, both measured in parallel. Connect the HV cable to the low side (L) winding and connect the Red lead to the H winding. Test mode is GST-GND.

Test 6 - This is a measurement of the insulation between the transformer low voltage winding and the transformer tank. Connections are exactly the same as for Test 5. Test mode is GSTg-RB.

Test 7 - This is a measurement of the insulation between the transformer low voltage winding and the high voltage winding. Connections are exactly the same as for Test 5 and 6. Test mode is UST-R.

NOTE:	Once Tests 5, 6 and 7 are completed, Line 8 will populate with values
	calculated by subtracting Test 6 from Test 5. This is applicable for
	values of capacitance, current and watts. Line 8 is a calculated
	comparison to the direct measurements of Test 7. Values on these two
	lines should be essentially the same. If they are not, re-check all
	connections and verify the proper operation of the test set. If Test 7 and
	Line 8 vary by more than 2%, the Insulation Rating (IR) will
	automatically populate with B (Bad).

Lines 9 and 10 will automatically populate with calculated values once Tests 1-7 and all bushing tests are completed. Line 9 is a corrected value for the insulation of the high voltage winding to the transformer tank minus the measured losses of the high side bushings. Line 10 is a corrected value for the insulation of the low voltage winding to the transformer tank minus the measured losses of the low side bushings.

Bushing C1 Tests

2	B ~~.	M e meg	egger. Iger.com		тwo	IN WI	SUL# NDIN	ATIO G TF	N TES RANSF	TS ORME	RS			f	Your Company Logo	}
														PAG	€	
BUS	HING	: C1 T	ESTS								Individ	ual Temp C	b <i>mp</i>			
T	эт		BUSHING	NAMEPLATE		TEST	TEST	frea	CAPACITANCE	P	WER FACTOR	s	DIR	ET		
	<i>.</i>	DSG	SERIAL#	POWER FACTOR	CAPACITANCE	NODE	K/	Sweep	C(pF)	MEASURED	@ 20%C	CORR FACTOR	mA	WATTS	%VDF	R
	11	H1				UST-R										
HI	12	H2				UST-R										
~	13	HЗ				UST-R										
	14	Ю				UST-R										
	15	X1				UST-R										
ьw	16	Х2				UST-R										
	17	XЗ				UST-R										
	18	XO				UST-R										
	19		OILTEST			UST-R										
BU	SHING	w Swe 3 C2	ep Results													
T	ВТ Ю.		BUSHING	NAMEPLATE		TEST	TEST	Freq	CAPACITANCE	P	WER FACTOR	5 CORR	DIR	IET	%VDF	R
		06G	SERIAL#	POWER FACTOR	CAPACITANCE	200 E		oweep	C (D F)	MEASURED	@ 20*C	FACTOR	mA	WATTS		
	20	H				GGTg-R	0.50									
HI KV	21	HZ				GGTg-R	0.50									
	22	HG				GGTg-R	0.50									
-	23	HU				GGT'g-R	0.50									
	24	×1 ×2				GGTG-R	0.50									
LOW KV	20	72 V2				COTTAC	0.50									
	20	~> \vn				eeng-R	0.30									
	27	XU				GGTg-R	0.50									

If the transformer windings are terminated using condenser bushings, then measurements of the C1 insulation on each bushing are generally made. The bushing insulation C1 is internal and is the insulation between the bushing center conductor and its test tap (capacitance tap). If a bushing does not have a test tap, then the C1 measurement is not performed.

NOTE: These tests may be performed with the bushing shorting leads still in place from the overall insulation tests. This allows all the high side bushing C1 tests to be performed without having to move the HV lead from bushing to bushing. It will still be necessary to move the Red lead to the individual test taps for each test.

Test 11 - This is the test of the C1 insulation on the high side phase 1 bushing. The HV lead is connected to the bushing top terminal and the Red lead is connected to the bushing test tap. Test mode is UST-R.

Tests 12, 13 and 14 are C1 measurements for the other high side bushings. Test 14 is used only if the high winding has a neutral bushing with a test tap. Make sure to move the Red lead connection from bushing to bushing as necessary. Test mode is UST-R.

Tests 15, 16, 17, and 18 are C1 measurements for the low side (L) bushings. Test 18 is used only if the high winding has a neutral bushing with a test tap. Test mode is UST-R.

NOTE:	Many condenser bushings will have factory values for C1 stamped on
	their nameplates, both for power factor and capacitance. The test results
	for C1 on each bushing can be compared directly to its respective
	nameplate values.

Oil Tests

The 93500 test form includes a single test line (Test 19) for capturing the results of a power factor test on the insulating oil. This is generally done on a sample of oil drawn from the main tank of the transformer under test. The test requires an oil test cell designed for field use. The test cell should be a three-terminal cell where connections for high voltage, measurement lead, and ground can be safely made.

As with the other insulation tests on this test form, the test sequence is initiated by right-clicking on the blue highlighted test number (19) at the bottom of the Bushing C1 Tests table. The test mode used is UST-R.

Bushing C2 Tests

Bushings with test taps may also be tested to obtain a C2 insulation measurement. The C2 insulation is the insulation between the test tap connection and the bushing mounting flange. To perform a C2 test, the HV lead is carefully connected to the bushing test tap and the Red lead is connected to the bushing center conductor. Care should be taken not to cause physical damage to the test tap, as the tap connection point may be a small pin or a flexible spring. If this is the case, use a small insulated jumper wire or a specially designed test tap adapter to make the HV lead connection.

CAUTION

Bushing test taps have very limited insulation and should generally be energized at reduced voltage levels. If the bushing manufacturer does not specify a test voltage level use no more than 500 volts (0.5kV).

Tests 20 to 27 are measurements of the individual bushings C2 insulation. All are performed with test mode GSTg-R All phase and neutral bushings may be tested providing they have test taps.

NOTE:	Similar to the bushing C1 tests, all the C2 measurements may be made with the bushing shorting leads still in place from the transformer overall tests.

SUR	GE ARRESTER	<u>s</u>												
	LOCATION	SERIAL#	MFR	OVERALL CATALOG	UNIT CATALOG	TYPE	RATED KV	ORDER	TESTMODE	TESTRV	Freq Sweep	DIR mA	ECT WATTS	IR
28									GST-GND					
29									GST-GND					
30									GST-GND					
31									GST-GND					
32									GST-GND					
33									GST-GND					
34									GST-GND					
35									GST-GND					
36									GST-GND					

Surge Arresters

If the transformer is equipped with surge or lightning arresters, these may be tested as well. If the arrester is a single-stack unit, its HV connection must be disconnected to eliminate the measurement of losses from other connected apparatus (such as switch and support insulators). Multi-stack arresters may be tested without disconnecting if desired. The procedure described below assumes single-stack arresters are being tested.

Nameplate, serial number and location information for each arrester should be entered so that future testing can be compared to specific units. **Tests 28 to 36** are measurements of the arrester insulation. Only test voltage, current and watts are recorded for arresters. The HV lead is attached to the arrester HV terminal. No connection using the Red or Blue leads is necessary. The Test Mode used is GST-GND. Once the HV lead is connected, right-click on the blue highlighted field on the desired test line to initiate the test sequence. Follow the onscreen instructions to complete the test.

Bushing Hot Collar Tests

B www.	Me .meg	egger. Iger.com	li TWO-W	NSULATIO INDING TR	N TES ANSF	TS ORM	IERS	P	Your Company Logo
нот со	LLAR	TESTS							
TEST NO.	DSG	SERIAL#	Designation	TEST MODE	TEST kV	Freq Sweep	DIR	ECT WATTS	-
37	H1			GST-GND					
38	H2			GST-GND					
39	HЗ			GST-GND					
40	HO			GST-GND					
41	X1			GST-GND					
42	X2			GST-GND		Γ			
43	ß			GST-GND					
44	XO			GST-GND					
45				GST-GND					
46				GST-GND					

Hot collar tests are generally performed on HV bushings that do not have test taps. However, these tests may also be done as an additional test if the bushings have test taps

Tests 37 to 46 - These tests measure the outer shell insulation of the bushings, including surface leakage and leakage current from the bushing surface through the insulating material to the center conductor. A conductive strap is placed around the bushing, below one of the skirts, normally the top skirt, and connected to the HV lead. The Red lead is connected to the bushing conductor. Test mode GST-GND is automatically programmed by the test form.

Multiple hot collar tests can be performed on each bushing. For each test, the location of the strap should be clearly indicated on the form in the Designation column.

Exciting Current Tests

E	EXCI	ITING CU	JRRENT	TESTS	_	N	umbe	er of Te	sts: <u>5</u>													
Г	(CONNEC	CTIONS:		PHASE	A: Enter	conn	ection		F	PHASE B:	Ente	rconn	nection			PHA	SE (C: Ente	er connectio	n	
		DETC	LTC	TEST kV	L(H) / C (pF)	mA	-	EQUI ^N mA	/. 10 kV WATTS	TEST kV	L(H) / C (pF)	m	A	EQUIV. 1 mA	IO kV WATTS	TEST kV	L(H C (l) / pF)	m	A EQU mA	JIV. 10 kV WATTS	R IR
	47																					
	48																					
	49																					
	50																					
	51																					
T	'IRU	NS RATI	O TEST			٨	lumb	per of T	ests: <u>1</u>													
	52	k∨	STAN	IDARD CAP	. (p.F.)																	
_	_							_	PHAS	ΕA	_			PHA	SE B				_	PHAS	EC	
		Н Тар	Х Тар	H \⁄oltage	X Voltage	CALC. RATIO		kV	CAP. (pF)	TURNS RAT	10 % ERROR		k٧	CAP. (pF)	TURNS	RATIO	& ERROR		ĸ٧	CAP. (pF)	TURNS RATIO	% ERROR
							53					54						55				

Measurements of the individual phase excitation current values are valuable in determining defects in the transformer core and coils. Excitation current measurements are generally performed on the high voltage winding only, to minimize the amount of current required.

NOTE: All bushing shorting leads must be removed for exciting current measurements. If the low voltage winding has a neutral, connect the neutral bushing as it normally is in-service (grounded or ungrounded).

Measurements are usually made one phase at a time. Connections should be documented in the fields provided at the top of the table. For initial or commissioning tests, perform the measurements on each possible primary and secondary tap setting. Unless conditions warrant, future tests may be reduced to the tap settings as found.

For each test line on the form, document the DETC (De-Energized Tap Changer) and LTC (Load Tap Changer) tap settings and perform three tests per form line. On WYE / Y connected transformers, connections would be H1-H0 / U-N /A-N, H2-H0 / V-N / B-N and H3-H0 / W-N /C-N. On DELTA D (or WHYE / Y without accessible neutral) connected transformers, connections would be H1-H2 / U-V /A-B, H2-H3 / V-W / B-C and H3-H1 / W-U /C-A

To perform the individual tests, connect the HV lead to one bushing and the Red lead to the second bushing. The test mode will be automatically set on the test form to UST-R.

To initiate the individual tests, right-click on the blue highlighted field of the desired test line. The test sequence initiates and the results will be placed in the proper fields automatically.

The number of test lines in the table is adjustable. Enter the number of lines desired for the number of taps to be tested.

NOTE Exciting current measurements are pending voltage level. Make sure use same voltage level as in earlier measurements on same transformer. Exciting current may also vary due to core magnetization status, exciting current measurements should be performed prior winding resistance measurement or after demagnetization.

Ratio Tests

Measurements of transformer winding ratio can be made with a high voltage power factor test set when a TTR capacitor is available. Depending on the voltage rating of the winding being energized, tests can be made up to 10kV. The significance of this is that higher volts per turn can be applied to the winding, stressing the winding turn-to-turn insulation more than low voltage ratio test sets. This may be able to detect high resistance turn faults that may be undetectable at lower voltage. The tests are performed one phase at a time on three-phase transformers.

To enable this portion of the test form, select the Show TTR Tests checkbox at the top of Page 1. A table for ratio test results will become visible near the end of the form. You should select the Number of Tests based on how many transformer taps you intend to test.

The first test must measure the capacitance of the Standard Capacitor, in pico-Farads (pF).

Connect the test set leads, the HV lead and the Red measurement lead, directly to the capacitor.

Initiate the test by right clicking on the blue field for the Standard Capacitor.

Subsequent tests require the HV lead to be connected to one side of a HV winding (e.g. H1/U/A) where the other side of the HV winding is grounded to the tank (e.g. H0/N/N). The corresponding winding on LV side is grounded on one side and on the other side is connected to Red lead via the capacitor.

By enter the winding voltage levels in the form, the assessment is automatic.

Multiple Quick Tests

Standards measurements may be complemented with additional measurements executed from the Multiple Quick Test sub-form selected as a new test or as manual measurements in the standard test forms. Check "Manual" in the select test boxes and a Multiple Quick Test table will be added at the end of the form.

In the field "INSULATION TESTED" you enter information on what to be tested, TEST MODE set/change the test mode, SUPPRESS set/change noise suppression mode. It is also possible to use Delta Control for controlling the test by clicking the Delta Control button (above the table) in PowerDB form, Delta Control will send all data to be stored in the Multiple Quick Test table.

Γ			Multiple	Test	7				TRAN	ISFORMER OVE	ERALL TESTS	3	Individ. Tei	ialTempComp mpCorr.Table	None]
Т	EST	INSULATION	TEST		TEST CONNE	LEAD CTIONS		TEST	FREQ	CAPACITANCE	PO	VER FACTO	R %	DIR	ECT		
'	NO	TESTED	MODE	HV	RED	BLUE	GND		SWEEP	C(pF)	MEASURED	@ 20°C	CORR FACTOR	mA	WATTS	- %VDF	IR
	1	C _{HG} + C _{HL}	G STg-B	н	L	т	G										
	2	C _{HG}	GSTg-RB	н	L	т	G										
	3	CHL	UST-R	н	L	т	G										
	4	CHL		TE	EST 1 MIN	US TES	Τ2										
	5	C _{LG} + C _{LT}	G STg-R	L	н	т	G										
	6	CLG	GSTg-RB	L	н	т	G										
	7	CLT	UST-B	L	н	т	G										
	8	CLT		TE	EST 5 MIN	IUS TES	Τ6										
	9	C _{TG} + C _{HT}	G STg-B	т	н	L	G										
	10	C _{TG}	GSTg-RB	т	н	L	G										
	11	CHT	UST-R	т	н	L	G										
	12	C _{HT}		TEST 9 MINUS TEST 10													
	13	C _{HG}		C _{HG} MINUS H BUSHINGS													
	14	C _{LG} .		CLG	MINUS	L BUSH	INGS										
	15	C _{TG'}		C _{TG} MINUS T BUSHINGS													

94500 – Three-Winding Transformer

Basic Form Information

The PF Three-Winding Transformer form is used for power factor/dissipation factor testing medium and high voltage power transformers, generally those with at least one winding rated over 5kV. Nameplate information (serial number, ratings, etc.) should be entered which identifies the asset being tested, and general information regarding the test conditions (test date, weather conditions, etc.) should also be noted.

Description of Tests

Transformer Overall Tests

Prior to the overall insulation tests, short all high side (H) bushings together and short all low side (L) bushings together, keeping both windings separated. Remove ground connections from neutral bushings.

Test 1 - This is a measurement of the insulation between the transformer high voltage winding and the transformer tank, plus the insulation between the high voltage winding and the low voltage winding, both measured in parallel. Connect the HV cable to the H (high voltage) winding, connect the Red lead to the L (low voltage) winding and Blue lead to the T (tertiary) winding. Test mode is GSTg-B.

Test 2 - This is a measurement of the insulation between the transformer high voltage winding and the transformer tank. Connections are exactly the same as for Test 1. Test mode is GSTg-RB.

Test 3 - This is a measurement of the insulation between the transformer high voltage winding and the low voltage winding. Connections are exactly the same as for Test 1 and 2. Test mode is UST-R.

NOTE: Once Tests 1, 2 and 3 are completed, Line 4 will populate with values calculated by subtracting Test 2 from Test 1. This is applicable for values of capacitance, current and watts. Line 4 is a calculated comparison to the direct measurements of Test 3. Values on these two lines should be essentially the same. If they are not, re-check all connections and verify the proper operation of the test set. If Test 3 and Line 4 vary by more than 2%, the Insulation Rating (IR) will automatically populate with B (Bad).

Test 5 - This is a measurement of the insulation between the transformer low voltage winding and the transformer tank, plus the insulation between the low voltage winding and the tertiary winding, both measured in parallel. Connect the HV cable to the low side (L) winding, connect the Red lead to the H winding and Blue lead to the T (tertiary) winding.. Test mode is GSTg-R.

Test 6 - This is a measurement of the insulation between the transformer low voltage winding and the transformer tank. Connections are exactly the same as for Test 5. Test mode is GSTg-RB.

Test 7 - This is a measurement of the insulation between the transformer low voltage winding and the high voltage winding. Connections are exactly the same as for Test 5 and 6. Test mode is UST-B.

NOTE: Once Tests 5, 6 and 7 are completed, Line 8 will populate with values calculated by subtracting Test 6 from Test 5. This is applicable for values of capacitance, current and watts. Line 8 is a calculated comparison to the direct measurements of Test 7. Values on these two lines should be essentially the same. If they are not, re-check all connections and verify the proper operation of the test set. If Test 7 and Line 8 vary by more than 2%, the Insulation Rating (IR) will automatically populate with B (Bad).

Test 9 - This is a measurement of the insulation between the transformer tertiary winding (T) and the transformer tank, plus the insulation between the tertiary winding (T) and high voltage winding (H), both measured in parallel. Connect the HV cable to tertiary winding (T), connect the Red lead to the L winding and Blue lead to the L winding. Test mode is GSTg-B.

Test 10 - This is a measurement of the insulation between the transformer tertiary winding and the transformer tank. Connections are exactly the same as for Test 5. Test mode is GSTg-RB.

Test 11 - This is a measurement of the insulation between the transformer tertiary winding and the high voltage winding. Connections are exactly the same as for Test 5 and 6. Test mode is UST-R.

```
NOTE: Once Tests 9, 10 and 11 are completed, Line 12 will populate with values calculated by subtracting Test 10 from Test 9. This is applicable for values of capacitance, current and watts. Line 12 is a calculated comparison to the direct measurements of Test 11. Values on these two lines should be essentially the same. If they are not, re-check all connections and verify the proper operation of the test set. If Test 11 and Line 12 vary by more than 2%, the Insulation Rating (IR) will automatically populate with B (Bad).
```

Lines 13, 14 and 15 will automatically populate with calculated values once Tests 1-11 and all bushing tests are completed. Line 13 is a corrected value for the insulation of the high voltage winding to the transformer tank minus the measured losses of the high side bushings. Line 14 is a corrected value for the insulation of the low voltage winding to the transformer tank minus the measured losses of the low side bushings. Line 15 is a corrected value for the insulation of the tertiary winding to the transformer tank minus the measured losses of the tertiary winding to the transformer tank minus the measured losses of the tertiary bushings.

Bushing C1 Tests

If the transformer windings are terminated using condenser bushings, then measurements of the C1 insulation on each bushing are generally made. The bushing insulation C1 is internal and is the insulation between the bushing center conductor and its test tap (capacitance tap). If a bushing does not have a test tap, then the C1 measurement is not performed.

NOTE: These tests may be performed with the bushing shorting leads still in place from the overall insulation tests. This allows all the high side bushing C1 tests to be performed without having to move the HV lead from bushing to bushing. It will still be necessary to move the Red lead to the individual test taps for each test.

Test 16 - This is the test of the C1 insulation on the high side phase 1 bushing. The HV lead is connected to the bushing top terminal and the Red lead is connected to the bushing test tap. Test mode is UST-R.

Tests 17, 18 and 19 are C1 measurements for the other high side bushings. Test 14 is used only if the high winding has a neutral bushing with a test tap. Make sure to move the Red lead connection from bushing to bushing as necessary. Test mode is UST-R.

Tests 20, 21, 22, and 23 are C1 measurements for the low side (L) bushings. Test 23 is used only if the high winding has a neutral bushing with a test tap. Test mode is UST-R.

Tests 24, 25, 26, and 27 are C1 measurements for the Tertiary (T) bushings. Test 27 is used only if the high winding has a neutral bushing with a test tap. Test mode is UST-R.

NOTE: Many condenser bushings will have factory values for C1 stamped on their nameplates, both for power factor and capacitance. The test results for C1 on each bushing can be compared directly to its respective nameplate values.

<u>Oil Tests</u>

The 94500 test form includes a single test line (Test 28) for capturing the results of one power factor test on insulating oil. This is generally done on a sample of oil drawn from the main tank of the transformer under test. The test requires an oil test cell designed for field use. The test cell should be a three-terminal cell where connections for high voltage, measurement lead, and ground can be safely made.

As with the other insulation tests on this test form, the test sequence is initiated by right-clicking on the blue highlighted test number (28) at the bottom of the Bushing C1 Tests table. The test mode used is UST-R.

Bushing C2 Tests

Bushings with test taps may also be tested to obtain a C2 insulation measurement. The C2 insulation is the insulation between the test tap connection and the bushing mounting flange. To perform a C2 test, the HV lead is carefully connected to the bushing test tap and the Red lead is connected to the bushing center conductor. Care should be taken not to cause physical damage to the test tap, as the tap connection point may be a small pin or a flexible spring. If this is the case, use a small insulated jumper wire or a specially designed test tap adapter to make the HV lead connection.

CAUTION

Bushing test taps have very limited insulation and should generally be energized at reduced voltage levels. If the bushing manufacturer does not specify a test voltage level use no more than 500 volts (0.5kV).

Tests 29 to 40 are measurements of the individual bushings C2 insulation. All are performed with test mode GSTg-R. All phase and neutral bushings may be tested providing they have test taps.

NOTE: Similar to the bushing C1 tests, all the C2 measurements may be made with the bushing shorting leads still in place from the transformer overall tests.

Bushing Hot Collar Tests

Hot collar tests are generally performed on HV bushings that do not have test taps. However, these tests may also be done as an additional test if the bushings have test taps

Tests 41 to 60 - These tests measure the outer shell insulation of the bushings, including surface leakage and leakage current from the bushing surface through the insulating material to the center conductor. A conductive strap is placed around the bushing, below one of the skirts, normally the top skirt, and connected to the HV lead. The Red lead is connected to the bushing conductor. Test mode GST-GND is automatically programmed by the test form.

Multiple hot collar tests can be performed on each bushing. For each test, the location of the strap should be clearly indicated on the form in the Designation column.

Surge Arresters

If the transformer is equipped with surge or lightning arresters, these may be tested as well. If the arrester is a single-stack unit, its HV connection must be disconnected to eliminate the measurement of losses from other connected apparatus (such as switch and support insulators). Multi-stack arresters may be tested without disconnecting if desired. The procedure described below assumes single-stack arresters are being tested.

Nameplate, serial number and location information for each arrester should be entered so that future testing can be compared to specific units.

Tests 61 to 72 are measurements of the arrester insulation. Only test voltage, current and watts are recorded for arresters. The HV lead is attached to the arrester HV terminal. No connection using the Red or Blue leads is necessary. The Test Mode used is GST-GND. Once the HV lead is connected, right-click on the blue highlighted field on the desired test line to initiate the test sequence. Follow the onscreen instructions to complete the test.

Turns Ratio Tests

Measurements of transformer winding ratio can be made with a high voltage power factor test set when a TTR capacitor is available. Depending on the voltage rating of the winding being energized, tests can be made up to 10kV. The significance of this is that higher volts per turn can be applied to the winding, stressing the winding turn-to-turn insulation more than low voltage ratio test sets. This may be able to detect high resistance turn faults that may be undetectable at lower voltage. The tests are performed one phase at a time on three-phase transformers.

To enable this portion of the test form, select the Show TTR Tests checkbox at the top of Page 1. A table for ratio test results will become visible near the end of the form. You should select the Number of Tests based on how many transformer taps you intend to test.

The first test must measure the capacitance of the Standard Capacitor, in pico-Farads (pF).

- Connect the test set leads, the HV lead and the Red measurement lead, directly to the capacitor.
- Initiate the test by right clicking on the blue field for the Standard Capacitor.

Subsequent tests require the HV lead to be connected to one side of a HV winding (e.g. H1/U/A) where the other side of the HV winding is grounded to the tank (e.g. H0/N/N). The corresponding winding on LV side is grounded on one side and on the other side is connected to Red lead via the capacitor.

By enter the winding voltage levels in the form, the assessment is automatic.

Exciting Current Tests

Measurements of the individual phase excitation current values are valuable in determining defects in the transformer core and coils. Excitation current measurements are generally performed on the high voltage winding only, to minimize the amount of current required.

NOTE: All bushing shorting leads must be removed for exciting current measurements. If the low voltage winding has a neutral, connect the neutral bushing as it normally is in-service (grounded or ungrounded).

Measurements are usually made one phase at a time. Connections should be documented in the fields provided at the top of the table. For initial or commissioning tests, perform the measurements on each possible primary and secondary tap setting. Unless conditions warrant, future tests may be reduced to the tap settings as found.

For each test line on the form, document the DETC (De-Energized Tap Changer) and LTC (Load Tap Changer) tap settings and perform three tests per form line. On WYE / Y connected transformers, connections would be H1-H0 / U-N /A-N, H2-H0 / V-N / B-N and H3-H0 / W-N /C-N. On DELTA D (or WHYE / Y without accessible neutral) connected transformers, connections would be H1-H2 / U-V /A-B, H2-H3 / V-W / B-C and H3-H1 / W-U /C-A

To perform the individual tests, connect the HV lead to one bushing and the Red lead to the second bushing. The test mode will be automatically set on the test form to UST-R.

To initiate the individual tests, right-click on the blue highlighted field of the desired test line. The test sequence initiates and the results will be placed in the proper fields automatically.

The number of test lines in the table is adjustable. Enter the number of lines desired for the number of taps to be tested.

NOTE: Exciting current measurements are pending voltage level. Make sure use same voltage level as in earlier measurements on same transformer. Exciting current may also vary due to core magnetization status, exciting current measurements should be performed prior winding resistance measurement or after demagnetization.

Multiple Quick Tests

Standards measurements may be complemented with additional measurements executed from the Multiple Quick Test sub-form selected as a new test or as manual measurements in the standard test forms. Check "Manual" in the select test boxes and a Multiple Quick Test table will be added at the end of the form.

In the field "INSULATION TESTED" you enter information on what to be tested, TEST MODE set/change the test mode, SUPPRESS set/change noise suppression mode.

It is also possible to use Delta Control for controlling the test by clicking the Delta Control button (above the table) in PowerDB form, Delta Control will send all data to be stored in the Multiple Quick Test table.

96005 - CABLES

Www.megger.com		CAB POWE	BLE IN R FA	ISULAT	TION FESTS	5			f	Your Company Logo	}
SUBSTATION								PAG)E		20
EQPT. LOCATION								DAT	те2	010-09-1	13
ASSETID		AMBIENT	TTEMPER/	ATURE	•C I		%	JOB	#		
TEST EQUIPMENT USED					TESTED) BY					
CABLE NAMEPLATE											
CABLE NAMEPLATE MFR. AND TYPE RATED KV AGE TYPE INSULATION MATERIAL	OPERATING KV	LOC AMPS	CATION _ (LOAD) _ NU HICKNESS		LENGTH- (DUCTORS			_ LE SI. TYPE	NGTH-IND ZE	000R	
CABLE NAMEPLATE	OPERATING KV DUCT TR DUCT TEMP	LOC AMPS INSULATIONTH AY	CATION		LENGTH - (DUCTORS	UDEN DUTDOOR	SULATION	_ LE SI. TYPE WEATH	NGTH-IND ZE HER	000R	
CABLE NAMEPLATE MFR.AND TYPE RATED KV AGE TYPE INSULATIONMATERIAL JACKET TEST FREQUENCY: 60 TEST INSULATION	OPERATING KV DUCTTR DUCTTEMP		CATION		LENGTH- 0 DUCTORS			_ LE SI. TYPE WEATH	NGTH-IND ZE HER	000R	
CABLE NAMEPLATE MFR. AND TYPE RATED kV TYPE AGE TYPE INSULATIONMATERIAL JACKET EARTH TEMP TEST FREQUENCY: 60 TEST NO INSULATION TESTED	OPERATING KV 	LOC AMPS INSULATIONTH AY SS. TEST KV	CATION	L(H) CIRCUIT	LENGTH- 0 DUCTORS	IDEN DUTDOOR IN VER FACTO	R %	_ LE SI TYPE WEATH DIF	NGTH-IND ZE HER RECT WATTS	%VDF	IR

Because of the many variations of cable installations, this test form is designed for flexibility in capturing test information and results.

Included is a normal "header" where location and test conditions are recorded, as well as a Cable Nameplate area for detailing specific information about the cable to be tested.

To allow for flexibility, the test table in this form is designed to grow by a line with every test added. This permits any number of cables to be tested, multiple times if necessary.

Specific information (phase designation, termination, etc.) about the cable insulation being tested should be entered in the Insulation Tested column. The appropriate test configuration must be selected from the dropdown list.

To initiate the test, right-click on the Test No in the left-most column of the table and follow the prompts provided in the pop-up window. At the conclusion of the test, the results will populate into the fields of the selected test row.

Continue testing as necessary by moving to the next row and repeating the same steps.

9

Delta 4310 User Interface

The testing procedures for the two versions of Delta4000 are principally the same. Delta4110 is operated from an external computer running Power DB Lite and Delta Control SW. Delta4310 has an internal computer with pre-installed Power DB On-board and Delta Control SW. Power DB On-board has the same functionality as Power DB Lite but the test forms are adapted to the smaller screen and the SW has support for the specific shortcut keys and buttons available on the 4310.

This section covers the specific controls on Delta4310 that differs from a standard laptop computer used together with Delta4110.

Communications Ports

Figure 9: Communications ports

4310 Joystick

The Joystick is weather-sealed with "left" and "right" buttons, similar to a 'mouse'.

The middle of the joystick contains the controls for the pointer and buttons for the 'left' (top) and 'right' (bottom) click. The TEST button has the same functionality as the 'Start' button on the instrument.

Home Action Icons

Select to create NEW test

Select to **SAVE** Test.

Select to **ZOOM-IN**

Select to **ZOOM-OUT**

Print Icon. Prints the Selected Test Form. Printer driver is factory installed. Please contact Megger for specific printer model availability.

Select to enter **PREFERENCES** screen

Figure 10: HOME Action Icons

Utility Icons

Cancel Icon. Select to Cancel without Saving.

Delete Icon. Deletes the Selected File or Report.

Print Icon. Prints the Selected Report. Printer must be standard USB supporting HP PCL protocol.

USB Out Icon. Select to Transfer Files or Reports from external USB Memory Stick to the TTR.

USB In Icon. Select to Transfer Files or Reports from the TTR to the external USB Memory Stick.

Back Icon. Select to return back to the previous screen.

Figure 11: Utility Icons

Navigating the screen

Home Screen Action Icons

Select HOME key to display Action Icons

Action Icons
Select NEW TEST to open new form
Select RECALL to open test from memory (either internal or USB memory)
On Board File Manager - Select File to Open X Internal Storage (240664 KB) USB Files (240664 KB) File Name Mod. Date Image: TTR_aa_1 11/13/07 03:0
various zones on display
File D:\POWERDB\TTR_aa_1.PdbXml
Figure 15: File Manager -Recall Test
Select SAVE to save test to memory

On Board File Manager -	Save File As				×
Internal Storage (240664 KB)			USB Files (240664 KB)		
File Name	Mod. Date		File Name	Mod. Date	
₩ TTR_aa_1	11/13/07 03:0				
File PFTS_1.	PdbXml		⊠ Sav	e to USB	
		38			

Figure 16: File Manager – SAVE Test screen

	Select 🜍	PREFER	RENCES to set §	global p	arameters
Delta 3000 Prefences				×	
Owner:	123445				Use
SN:	PowerDB1234		Units: Imperial	•	Zone Key to tab
Language:	InternationalEnglis	ih 🗾	Suppression	On 🗹	
Save File Prefix:	PFTS_	% Error Lir	mit: 0.75		
Equivalent Reading:	10kV 💌	[
Default Form:	1 - POWER FACTO	OR QUICK TES	Т	•	
		OK	Cancel		

Figure 17:	Global Settings – Preferences screen
Owner:	User specified field
SN:	Serial Number of Test Instrument
Units:	Units of Measure setting
Language:	Indicates displayed language
Save File Prefix	All Saved files will begin with this prefix
% Error limit:	Sets error limit
Equivalent read	ling: Sets voltage level to display "equivalent reading" level
Default form:	Indicates default form, upon power-up

PRINT to print to USB printer

Form Print Options
🗖 No Page Numbering
Shading Options
• Print shades as a color
• Print shades as a pattern
C Do not print shades
Blank Form Options
☑ Indicate Entry Fields
Darken Read-Only Calculated Fields
OK Cancel

Use **SPACE** bar to select OPTIONs

Use Zone key to tab

10

Maintenance and Calibration

Maintenance

Maintenance should be performed only by qualified persons familiar with the hazards involved with high-voltage test equipment. Read and understand Section 2, Safety, before performing any service.

Routine maintenance is all that is required for these test sets. The cables and connector panel should be inspected frequently to be sure all connections are tight and all ground connections intact.

DISCONNECT the MAINS plug before cleaning.

The appearance of the test set can be maintained by occasional cleaning of the case, panel and cable assemblies. The outside of the carrying case can be cleaned with detergent and water. Dry with a clean, dry cloth. The control panel can be cleaned with a cloth dampened with detergent and water. Do not allow water to penetrate panel holes, because damage to components on the underside may result. A household all-purpose spray cleaner sprayed on cloth can be used to clean the panel. Polish with a soft, dry cloth, taking care not to scratch the display screen cover. The cables and mating panel receptacles can be cleaned with isopropyl or denatured alcohol applied with a clean cloth.

Contamination of some parts of the high-voltage circuit, in particular the highvoltage cable terminations and its mating panel receptacle, may show up as a residual PF(DF) meter reading. Cleaning of these sensitive parts will remove the leakage paths which cause the unwanted leakage current. Treat the high-voltage cable with care. Keep it clean and do not subject it to abuse, such as dropping or crimping.

Calibration

During the warranty period, no calibration should be necessary. Contact the factory if there is any suspected problem.

The overall accuracy of capacitance and power factor (dissipation factor) at 10 kV should also be checked at least once a year against Megger's Capacitance and Dissipation Factor Standard (Cat. No. 670500-1). This will ensure that the entire high-voltage circuit is functioning and calibrated properly.

A calibration kit is provided as an optional accessory. This allows for traceable calibration locally without sending the unit to factory.

Factory calibration is of course also available. Contact your local Megger representative for details

Recommended calibration interval is 1-3 years.

Troubleshooting

General Guidelines

This section provides general guidelines for basic troubleshooting of the Delta4000. The Delta4000 undergoes rigorous testing before being shipped from the factory; however, when it is subjected to various field conditions, there is always the possibility of damage being done to the instrument or its cables. This troubleshooting section does not attempt to cover all possibilities, but does list suggestions that can be carried out in the field. There may be problems that require the unit to be returned to the factory for repair.

If questionable readings are obtained, the first step is to check the calibration of the Delta4000 using Megger's Capacitance and Dissipation Factor Standard (Cat. No. 670500-1). If the standard is not available, the next step is to test a specimen with a stable known value e.g. the TTR capacitor or one of the capacitors in the Megger capacitor kit. If such a specimen is not available, then perform the following procedure for an "Open Air Test."

Open Air Test

The purpose of this test is to check the overall functionality of the Delta4000, including the high-voltage cable. The readings obtained show the stray signal losses of the high-voltage cable.

- 1. Connect the wing nut ground terminal of the test set to a low impedance earth ground using the ground cable supplied.
- 2. Connect the control unit to the high-voltage unit using the two interconnection cables.
- 3. Connect the external interlock cables to the SAFETY INTERLOCK receptacles.
- 4. Connect the high-voltage cable to the HV OUTPUT terminal of the high-voltage unit (power supply). Be sure that the connector locks in place.

- 5. With the main breaker OFF, plug the input power cord into the test set AC POWER receptacle and into a three-wire grounded power receptacle having the appropriate voltage and current ratings.
- 6. Suspend the outboard end of the high-voltage cable in free air so that it is clear of all surrounding objects by at least 3 ft (0.91 m). Use dry nylon rope if available.
- 7. Start your Delta4000 and use Delta Control (or a PowerDB form) and perform a general GST-GND test.

When test is completed, observe test results. The results should be as follows:

Capacitance: between 4.0 and 8.0 pF %DF or %PF: between -1.0 to +2.0% Watts @ 10 kV: between -0.002 to +0.006 mA @ 10 kV: between 0.015 to 0.030

Repair

Megger offers a complete repair service and recommends that its customers take advantage of this service in the event of equipment malfunction. Please indicate all pertinent information including problem, symptoms, and attempted repairs. Pack the Delta4000 in its transit case and include all cables that came with the instrument. Equipment returned for repair must be shipped prepaid and insured and marked for the attention of the Repair Department.