# R&S®SPECTRUM RIDER FPH HANDHELD SPECTRUM ANALYZER



**Specifications** 



Data Sheet Version 13.00

ROHDE&SCHWARZ

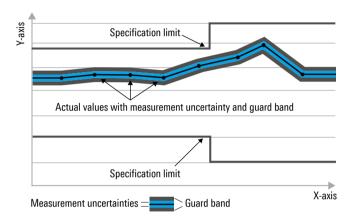
Make ideas real



### **CONTENTS**

| Definitions                                |                                                     | 3  |
|--------------------------------------------|-----------------------------------------------------|----|
| Specifications                             |                                                     | 4  |
| Frequency                                  |                                                     | 4  |
| Sweep time                                 |                                                     | 4  |
| Bandwidths                                 |                                                     | 5  |
| Level                                      |                                                     | 5  |
| Trigger functions                          |                                                     | 9  |
| Inputs and outputs                         |                                                     | 10 |
| General data                               |                                                     | 10 |
| R&S®FPH-B100 type N RF input conne         | ctor for model .26                                  | 12 |
| R&S®FPH-K7 modulation analysis             |                                                     | 12 |
| R&S®FPH-K19 channel power meter            |                                                     | 14 |
| R&S®FPH-K29 pulse measurements wi          | th power sensor                                     | 14 |
| R&S®FPH-K43 receiver mode and char         | nnel scan measurement application                   | 15 |
| R&S®FPH-K57 advanced gated trigger         | measurement                                         | 15 |
| R&S®HA-Z350 log-periodic OEM anteni        | na                                                  | 15 |
| R&S®FSH-Z14 directional power sensor       | г                                                   | 16 |
| R&S®FSH-Z44 directional power sensor       | г                                                   | 17 |
| Equivalence of specifications for differen | nt R&S <sup>®</sup> Spectrum Rider FPH part numbers | 19 |
| Ordering information                       |                                                     | 19 |
| Options                                    |                                                     | 19 |
| Extras                                     |                                                     | 20 |
| Antennas and antenna accessories           |                                                     | 20 |
| R&S®NRP-Zxx power sensors supporte         | ed by the R&S®Spectrum Rider FPH                    | 22 |
| Optical power sensors and accessories      |                                                     | 22 |
| Service options                            |                                                     | 23 |

### **Definitions**


#### Genera

Product data applies under the following conditions:

- Three hours storage at ambient temperature followed by 30 minutes warm-up operation
- Specified environmental conditions met
- · Recommended calibration interval adhered to
- All internal automatic adjustments performed, if applicable

#### Specifications with limits

Represent warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as <,  $\leq$ ,  $\geq$ ,  $\pm$ , or descriptions such as maximum, limit of, minimum. Compliance is ensured by testing or is derived from the design. Test limits are narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable.



#### Non-traceable specifications with limits (n. trc.)

Represent product performance that is specified and tested as described under "Specifications with limits" above. However, product performance in this case cannot be warranted due to the lack of measuring equipment traceable to national metrology standards. In this case, measurements are referenced to standards used in the Rohde & Schwarz laboratories.

#### Specifications without limits

Represent warranted product performance for the specified parameter. These specifications are not specially marked and represent values with no or negligible deviations from the given value (e.g. dimensions or resolution of a setting parameter). Compliance is ensured by design.

#### Typical data (typ.)

Characterizes product performance by means of representative information for the given parameter. When marked with <, > or as a range, it represents the performance met by approximately 80 % of the instruments at production time. Otherwise, it represents the mean value.

#### Nominal values (nom.)

Characterize product performance by means of a representative value for the given parameter (e.g. nominal impedance). In contrast to typical data, a statistical evaluation does not take place and the parameter is not tested during production.

#### Measured values (meas.)

Characterize expected product performance by means of measurement results gained from individual samples.

#### Uncertainties

Represent limits of measurement uncertainty for a given measurand. Uncertainty is defined with a coverage factor of 2 and has been calculated in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM), taking into account environmental conditions, aging, wear and tear.

Device settings and GUI parameters are designated with the format "parameter: value".

Non-traceable specifications with limits, typical data as well as nominal and measured values are not warranted by Rohde & Schwarz.

In line with the 3GPP/3GPP2 standard, chip rates are specified in million chips per second (Mcps), whereas bit rates and symbol rates are specified in billion bits per second (Gbps), million bits per second (Mbps), thousand bits per second (kbps), million symbols per second (Msps) or thousand symbols per second (ksps), and sample rates are specified in million samples per second (Msample/s). Gbps, Mcps, Mbps, Msps, ksps and Msample/s are not SI units.

# **Specifications**

# **Frequency**

| Frequency range      | model .02                                | 5 kHz to 2 GHz            |
|----------------------|------------------------------------------|---------------------------|
|                      | with R&S®FPH-B3 option installed         | 5 kHz to 3 GHz            |
|                      | with R&S®FPH-B3 and R&S®FPH-B4           | 5 kHz to 4 GHz            |
|                      | options installed                        |                           |
|                      | model .06                                | 5 kHz to 6 GHz            |
|                      | with R&S® FPH-B8 option installed        | 5 kHz to 8 GHz            |
|                      | models .13/.23 (with tracking generator) | 5 kHz to 13.6 GHz         |
|                      | with R&S® FPH-B20 option installed       | 5 kHz to 20 GHz           |
|                      | models .26/.36 (with tracking generator) | 5 kHz to 26.5 GHz         |
|                      | with R&S® FPH-B31 option installed       | 5 kHz to 31 GHz           |
|                      | models .44/.54 (with tracking generator) | 5 kHz to 44 GHz           |
|                      | models .06/.13/.26/.23/.36/.44/.54,      | from 5 kHz down to 100 Hz |
|                      | with R&S® FPH-B29 option installed 1     |                           |
| Frequency resolution |                                          | 1 Hz                      |

| Reference frequency, internal           |                |                                             |
|-----------------------------------------|----------------|---------------------------------------------|
| Aging per year                          |                | 1 × 10 <sup>-6</sup>                        |
| Temperature drift                       | 0 °C to +50 °C | 1 x 10 <sup>-6</sup>                        |
| Achievable initial calibration accuracy |                | 5 × 10 <sup>-7</sup>                        |
| Total reference uncertainty             |                | (time since last adjustment × aging rate) + |
|                                         |                | temperature drift + calibration accuracy    |

| Frequency readout                 |             |                                                                             |
|-----------------------------------|-------------|-----------------------------------------------------------------------------|
| Marker resolution                 |             | 1 Hz                                                                        |
| Uncertainty                       |             | ±(marker frequency × reference<br>uncertainty + 10 % × resolution bandwidth |
|                                   |             | + ½ (span / (sweep points – 1) + 1 Hz)                                      |
| Number of sweep (trace) points    |             | 711                                                                         |
| Marker tuning frequency step size |             | span / 710                                                                  |
| Frequency counter resolution      |             | 0.1 Hz                                                                      |
| Count uncertainty                 | SNR > 25 dB | ±(frequency × reference uncertainty +                                       |
|                                   |             | ½ (last digit))                                                             |
| Frequency span                    |             | 0 Hz,                                                                       |
|                                   |             | 10 Hz to 2/3/4/6/8/13.6/20/26.5/31 GHz                                      |
| Span uncertainty                  |             | 1 % (nom.)                                                                  |

| Spectral purity | frequency = 500 MHz      |                                           |
|-----------------|--------------------------|-------------------------------------------|
| SSB phase noise | models .02/.06/.13/.26   |                                           |
|                 | carrier offset = 30 kHz  | < -88 dBc (1 Hz), -95 dBc (1 Hz) (typ.)   |
|                 | carrier offset = 100 kHz | < -98 dBc (1 Hz), -105 dBc (1 Hz) (typ.)  |
|                 | carrier offset = 1 MHz   | < -118 dBc (1 Hz), -125 dBc (1 Hz) (typ.) |
|                 | models .23/.36/.44/.54   |                                           |
|                 | carrier offset = 30 kHz  | < -88 dBc (1 Hz), -94 dBc (1 Hz) (typ.)   |
|                 | carrier offset = 100 kHz | < -90 dBc (1 Hz), -96 dBc (1 Hz) (typ.)   |
|                 | carrier offset = 1 MHz   | < -115 dBc (1 Hz), -120 dBc (1 Hz) (typ.) |

### Sweep time

| Sweep time  | span = 0 Hz            | 1 ms to 1000 s                    |
|-------------|------------------------|-----------------------------------|
|             | 10 Hz ≤ span ≤ 600 MHz | 20 ms to 1000 s                   |
|             | span > 600 MHz         | 20 ms x span / 1600 MHz to 1000 s |
| Uncertainty | span = 0 Hz            | 1 % (nom.)                        |
|             | span ≥ 10 Hz           | 3 % (nom.)                        |

 $<sup>^1</sup>$   $\,$  For serial number  $\geq$  103100. Not applicable to R&S  $^{\! @}$  Spectrum Rider FPH model .02.

### **Bandwidths**

| Resolution bandwidths  |                       |                                    |
|------------------------|-----------------------|------------------------------------|
| Range                  | -3 dB bandwidths      | 1 Hz to 3 MHz in 1/3 sequence      |
| Bandwidth accuracy     | 1 Hz ≤ RBW ≤ 300 kHz  | < 5 % (nom.)                       |
|                        | 300 kHz < RBW ≤ 1 MHz | < 10 % (nom.)                      |
| Selectivity 60 dB:3 dB |                       | < 5 (nom.) (Gaussian type filters) |
| Video filters          |                       |                                    |
| Range                  | -3 dB bandwidths      | 1 Hz to 3 MHz in 1/3 sequence      |

### Level

| Display range                       |                                                   | displayed noise floor to +30 dBm                                                                              |  |
|-------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Maximum rated input level with RF a | attenuation ≥ 10 dB                               |                                                                                                               |  |
| DC voltage                          |                                                   | 50 V                                                                                                          |  |
| CW RF power                         | model .02                                         | 33 dBm (= 2 W)                                                                                                |  |
| ·                                   | models .06/.13/.26                                | 27 dBm (= 0.5 W)                                                                                              |  |
|                                     | models .23/.36/.44/.54 <sup>2</sup>               | 25 dBm (= 316 mW)                                                                                             |  |
| Peak RF power (duration < 3 s)      | model .02                                         | 36 dBm (= 4 W)                                                                                                |  |
| , , ,                               | models .06/.13/.26/.23/.36/.44/.54                | 30 dBm (= 1 W)                                                                                                |  |
|                                     | models .23/.36/.44/.54 <sup>2</sup>               | 28 dBm (= 631 mW)                                                                                             |  |
| Maximum rated input level with RF a | attenuation < 10 dB                               |                                                                                                               |  |
| DC voltage                          |                                                   | 50 V                                                                                                          |  |
| CW RF power                         | model .02                                         | 20 dBm (= 100 mW)                                                                                             |  |
|                                     | models .06/.13/.26/.23/.36/.44/.54                | 20 dBm (= 100 mW)                                                                                             |  |
| Peak RF power (duration < 3 s)      | model .02                                         | 23 dBm (= 200 mW)                                                                                             |  |
| ,                                   | models .06/.13/.26/.23/.36/.44/.54                | 23 dBm (= 200 mW)                                                                                             |  |
| Intermodulation                     | <u> </u>                                          |                                                                                                               |  |
| Third order intercept (TOI)         |                                                   | intermodulation-free dynamic range, signal level –20 dBm (both), RF attenuation = 0 dB, RF preamplifier = off |  |
|                                     |                                                   | .7 dD ()                                                                                                      |  |
|                                     | f = 1 GHz                                         | +7 dBm (meas.)                                                                                                |  |
|                                     | f = 2.4 GHz +10 dBm (meas.)                       |                                                                                                               |  |
|                                     | models .06/.13/.26                                | .7 dD ( )                                                                                                     |  |
|                                     | f = 1 GHz                                         | +7 dBm (meas.)                                                                                                |  |
|                                     | f = 4.5 GHz, 22 GHz                               | +8 dBm (meas.)                                                                                                |  |
|                                     | f = 9.5 GHz, 26.5 GHz                             | +10 dBm (meas.)                                                                                               |  |
|                                     | f = 12 GHz                                        | +9 dBm (meas.)                                                                                                |  |
|                                     | models .23/.36/.44/.54                            | 40 ID (                                                                                                       |  |
|                                     | f = 1 GHz                                         | +10 dBm (meas.)                                                                                               |  |
|                                     | f = 4.5 GHz, 9.5 GHz, 26.5 GHz,<br>32 GHz, 40 GHz | +11 dBm (meas.)                                                                                               |  |
|                                     | f = 12 GHz                                        | +8 dBm (meas.)                                                                                                |  |
|                                     | f = 22 GHz                                        | +9 dBm (meas.)                                                                                                |  |
| Second harmonic intercept (SHI)     | RF attenuation = 0 dB, RF preamplifier =          | RF attenuation = 0 dB, RF preamplifier = off, signal level = -40 dBm                                          |  |
|                                     | model .02                                         |                                                                                                               |  |
|                                     | f <sub>in</sub> = 20 MHz to 1.5 GHz               | -60 dBc (nom.)                                                                                                |  |
|                                     | f <sub>in</sub> = 1.5 GHz to 2 GHz                | -80 dBc (nom.)                                                                                                |  |
|                                     | models .06/.13/.26                                | , ,                                                                                                           |  |
|                                     | $f_{in} = 20 \text{ MHz to } 1.5 \text{ GHz}$     | -60 dBc (nom.)                                                                                                |  |
|                                     | f <sub>in</sub> = 1.5 GHz to 14 GHz               | -90 dBc (nom.)                                                                                                |  |
|                                     | f <sub>in</sub> = 14 GHz to 15.4 GHz              | -85 dBc (nom.)                                                                                                |  |
|                                     | models .23/.36/.44/.54                            |                                                                                                               |  |
|                                     | f <sub>in</sub> = 20 MHz to 1.5 GHz               | -60 dBc (nom.)                                                                                                |  |
|                                     | f <sub>in</sub> = 1.5 GHz to 22 GHz               | -90 dBc (nom.)                                                                                                |  |

 $<sup>^{2}\,\,</sup>$  RF input maximum power level ratings derate to +20 dBm for frequencies below 50 MHz.

| Displayed average noise level (DANL) | 0 dB RF attenuation, termination 50               |                             |  |
|--------------------------------------|---------------------------------------------------|-----------------------------|--|
|                                      | sample detector, log. scaling, normalized to 1 Hz |                             |  |
|                                      | model .02                                         |                             |  |
|                                      | preamplifier = off                                | . 125 dDm 112 dDm /hm )     |  |
|                                      | 1 MHz to 10 MHz                                   | < -135 dBm, -142 dBm (typ.) |  |
|                                      | 10 MHz to 1 GHz                                   | < -142 dBm, -146 dBm (typ.) |  |
|                                      | 1 GHz to 4 GHz                                    | < –140 dBm, –144 dBm (typ.) |  |
|                                      | preamplifier = on                                 | (-0.15. (00.15. ().)        |  |
|                                      | 1 MHz to 10 MHz                                   | < -150 dBm, -160 dBm (typ.) |  |
|                                      | 10 MHz to 3 GHz                                   | < –158 dBm, –163 dBm (typ.) |  |
|                                      | 3 GHz to 4 GHz                                    | < -156 dBm, -161 dBm (typ.) |  |
|                                      | models .06/.13/.26                                |                             |  |
|                                      | preamplifier = off                                |                             |  |
|                                      | 1 MHz to 10 MHz                                   | < -122 dBm, -130 dBm (typ.) |  |
|                                      | 10 MHz to 25 MHz                                  | < -130 dBm, -135 dBm (typ.) |  |
|                                      | 25 MHz to 1 GHz                                   | < -140 dBm, -145 dBm (typ.) |  |
|                                      | 1 GHz to 19 GHz                                   | < -135 dBm, -140 dBm (typ.) |  |
|                                      | 19 GHz to 27 GHz                                  | < -130 dBm, -138 dBm (typ.) |  |
|                                      | 27 GHz to 29 GHz                                  | < -125 dBm, -130 dBm (typ.) |  |
|                                      | 29 GHz to 31 GHz                                  | < -120 dBm, -123 dBm (typ.) |  |
|                                      | preamplifier = on                                 |                             |  |
|                                      | 1 MHz to 20 MHz                                   | < -147 dBm, -152 dBm (typ.) |  |
|                                      | 20 MHz to 3 GHz                                   | < -158 dBm, -162 dBm (typ.) |  |
|                                      | 3 GHz to 4.5 GHz                                  | < -155 dBm, -158 dBm (typ.) |  |
|                                      | 4.5 GHz to 27 GHz                                 | < -150 dBm, -155 dBm (typ.) |  |
|                                      | 27 GHz to 29 GHz                                  | < -140 dBm, -145 dBm (typ.) |  |
|                                      | 29 GHz to 31 GHz                                  | < -130 dBm, -133 dBm (typ.) |  |
|                                      | models .23/.36/.44/.54                            | , (31 )                     |  |
|                                      | preamplifier = off                                |                             |  |
|                                      | 1 MHz to 10 MHz                                   | < -125 dBm, -130 dBm (typ.) |  |
|                                      | 10 MHz to 25 MHz                                  | < –130 dBm, –135 dBm (typ.) |  |
|                                      | 25 MHz to 2.7 GHz                                 | <-140 dBm, -145 dBm (typ.)  |  |
|                                      | 2.7 GHz to 8 GHz                                  | < -135 dBm, -140 dBm (typ.) |  |
|                                      | 8 GHz to 29 GHz                                   | < -133 dBm, -138 dBm (typ.) |  |
|                                      | 29 GHz to 38 GHz                                  | < -130 dBm, -135 dBm (typ.) |  |
|                                      | 38 GHz to 44 GHz                                  | < -125 dBm, -130 dBm (typ.) |  |
|                                      | preamplifier = on                                 | <-125 αΒπ, -156 αΒπ (typ.)  |  |
|                                      |                                                   | < 147 dRm 152 dRm (tvn.)    |  |
|                                      | 1 MHz to 20 MHz<br>20 MHz to 3 GHz                | < -147 dBm, -152 dBm (typ.) |  |
|                                      | 3 GHz to 4.2 GHz                                  | < -157 dBm, -162 dBm (typ.) |  |
|                                      |                                                   | < -150 dBm, -155 dBm (typ.) |  |
|                                      | 4.2 GHz to 8 GHz                                  | < -153 dBm, -158 dBm (typ.) |  |
|                                      | 8 GHz to 27.5 GHz                                 | < -145 dBm, -150 dBm (typ.) |  |
|                                      | 27.5 GHz to 38 GHz                                | < -140 dBm, -145 dBm (typ.) |  |
|                                      | 38 GHz to 44 GHz                                  | < -130 dBm, -135 dBm (typ.) |  |

| Immunity to interference |                                                              |                    |
|--------------------------|--------------------------------------------------------------|--------------------|
| Image frequencies        | model .02                                                    |                    |
| 3                        | f <sub>in</sub> – 2 × 30.15 MHz                              | -70 dBc (nom.)     |
|                          | f <sub>in</sub> – 2 × 830.15 MHz                             | -70 dBc (nom.)     |
|                          | f < 3 GHz, f <sub>in</sub> – 2 × 4042.65 MHz                 | -60 dBc (nom.)     |
|                          | f ≥ 3 GHz, f <sub>in</sub> + 2 × 830.15 MHz                  | -60 dBc (nom.)     |
|                          | models .06/.13/.26                                           | 00 020 ()          |
|                          | f <sub>in</sub> – 2 × 30.15 MHz                              | -70 dBc (nom.)     |
|                          | f <sub>in</sub> – 2 × 830.15 MHz                             | -70 dBc (nom.)     |
|                          | $f < 4 \text{ GHz}, f_{in} + 2 \times 5582.35 \text{ MHz}$   | -50 dBc (nom.)     |
|                          | $f < 4 \text{ GHz}, f_{in} + 2 \times 7230.15 \text{ MHz}$   | -50 dBc (nom.)     |
|                          | $8 \text{ GHz} \le f < 20 \text{ GHz},$                      | -70 dBc (nom.)     |
|                          | $f_{in} + 2 \times 4030.15 \text{ MHz}$                      | -70 dBc (nom.)     |
|                          | 8 GHz ≤ f < 20 GHz.                                          | -70 dBc (nom.)     |
|                          | ,                                                            | -70 dBc (Hoffi.)   |
|                          | f <sub>in</sub> + 2 × 5582.35 MHz                            | 70 dDa (nom )      |
|                          | 8 GHz ≤ f < 20 GHz,                                          | -70 dBc (nom.)     |
|                          | f <sub>in</sub> + 2 × 7230.15 MHz                            | 40 dD = (n = n )   |
|                          | 20 GHz ≤ f < 26.5GHz,                                        | -40 dBc (nom.)     |
|                          | f <sub>in</sub> – 2 × 4030.15 MHz                            | CO dD = (n = n = ) |
|                          | 26.5 GHz ≤ f < 28.5 GHz,                                     | -60 dBc (nom.)     |
|                          | f <sub>in</sub> – 2 × 7230.15 MHz                            |                    |
|                          | models .23/.36/.44/.54                                       |                    |
|                          | $f_{in} - 2 \times 30.15 \text{ MHz}$                        | -70 dBc (nom.)     |
|                          | $f_{in} - 2 \times 830.15 \text{ MHz}$                       | -70 dBc (nom.)     |
|                          | f < 4.2 GHz, f <sub>in</sub> + 2 × 5582.35 MHz               | -70 dBc (nom.)     |
|                          | $f < 4.2 \text{ GHz}, f_{in} + 2 \times 7230.15 \text{ MHz}$ | -70 dBc (nom.)     |
|                          | 8 GHz ≤ f < 28 GHz,                                          | -70 dBc (nom.)     |
|                          | f <sub>in</sub> + 2 × 4030.15 MHz                            |                    |
|                          | 8 GHz ≤ f < 28 GHz,                                          | -70 dBc (nom.)     |
|                          | f <sub>in</sub> + 2 × 5582.35 MHz                            |                    |
|                          | 8 GHz ≤ f < 28 GHz,                                          | -70 dBc (nom.)     |
|                          | $f_{in} + 2 \times 7230.15 \text{ MHz}$                      |                    |
|                          | 28 GHz ≤ f < 44 GHz,                                         | -70 dBc (nom.)     |
|                          | $f_{in} - 2 \times 5582.35 \text{ MHz}$                      |                    |
|                          | 28 GHz ≤ f < 44 GHz,                                         | -70 dBc (nom.)     |
|                          | $f_{in} - 2 \times 7230.15 \text{ MHz}$                      |                    |
| Intermediate frequencies | model .02                                                    |                    |
|                          | 30.15 MHz, 830.15 MHz, 4042.65 MHz                           | -60 dBc (nom.)     |
|                          | models .06/.13/.26                                           |                    |
|                          | 30.15 MHz, 830.15 MHz, 4030.15 MHz                           | -60 dBc (nom.)     |
|                          | 5582.35 MHz                                                  | -50 dBc (nom.)     |
|                          | 7230.15 MHz                                                  | -40 dBc (nom.)     |
|                          | models .23/.36/.44/.54                                       |                    |
|                          | 30.15 MHz                                                    | -50 dBc (nom.)     |
|                          | 830.15 MHz, 4030.15 MHz,                                     | -60 dBc (nom.)     |
|                          | 5582.35 MHz, 7230.15 MHz                                     |                    |
|                          |                                                              |                    |

| signal level – RF attenuation < –30 dBm     | $\begin{split} &f \leq 3 \text{ GHz, spurious at} \\ &f_{\text{in}} - 2021.325 \text{ MHz} \\ &\text{models }.06/.13/.26 \\ &f < 4 \text{ GHz, spurious at} \\ &f_{\text{in}} + 2791.175 \text{ MHz} \\ &f < 4 \text{ GHz, spurious at} \\ &f_{\text{in}} + 3615.075 \text{ MHz} \\ &4 \text{ GHz} \leq f < 8 \text{ GHz, spurious at} \\ &f_{\text{in}} - 415.075 \text{ MHz} \\ &8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ &f_{\text{in}} + 2015.075 \text{ MHz} \\ &8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ &f_{\text{in}} + 2791.175 \text{ MHz} \\ &8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ &f_{\text{in}} + 3615.075 \text{ MHz} \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -60 dBc (nom.)  -60 dBc (nom.)  -60 dBc (nom.)  -60 dBc (nom.)  -60 dBc (nom.) |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                             | models .06/.13/.26 $f < 4 \text{ GHz, spurious at} \\ f_{in} + 2791.175 \text{ MHz} \\ f < 4 \text{ GHz, spurious at} \\ f_{in} + 3615.075 \text{ MHz} \\ 4 \text{ GHz} \le f < 8 \text{ GHz, spurious at} \\ f_{in} - 415.075 \text{ MHz} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ f_{in} + 2015.075 \text{ MHz} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ f_{in} + 2791.175 \text{ MHz} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ f_{in} + 2791.175 \text{ MHz} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 6 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} \ge f < 20 \text{ GHz} \\ 8 \text{ GHz} $ | -60 dBc (nom.) -60 dBc (nom.) -60 dBc (nom.)                                   |
|                                             | $f < 4 \text{ GHz, spurious at}$ $f_{\text{in}} + 2791.175 \text{ MHz}$ $f < 4 \text{ GHz, spurious at}$ $f_{\text{in}} + 3615.075 \text{ MHz}$ $4 \text{ GHz} \le f < 8 \text{ GHz, spurious at}$ $f_{\text{in}} - 415.075 \text{ MHz}$ $8 \text{ GHz} \le f < 20 \text{ GHz, spurious at}$ $f_{\text{in}} + 2015.075 \text{ MHz}$ $8 \text{ GHz} \le f < 20 \text{ GHz, spurious at}$ $f_{\text{in}} + 2791.175 \text{ MHz}$ $8 \text{ GHz} \le f < 20 \text{ GHz, spurious at}$ $f_{\text{in}} + 2791.175 \text{ MHz}$ $8 \text{ GHz} \le f < 20 \text{ GHz, spurious at}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -60 dBc (nom.) -60 dBc (nom.) -60 dBc (nom.)                                   |
|                                             | $\begin{split} &f_{\text{in}} + 2791.175 \text{ MHz} \\ &f < 4 \text{ GHz, spurious at} \\ &f_{\text{in}} + 3615.075 \text{ MHz} \\ &4 \text{ GHz} \le f < 8 \text{ GHz, spurious at} \\ &f_{\text{in}} - 415.075 \text{ MHz} \\ &8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ &f_{\text{in}} + 2015.075 \text{ MHz} \\ &8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ &f_{\text{in}} + 2791.175 \text{ MHz} \\ &8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ &8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \\ &8 \text{ GHz} \le f < 20 \text{ GHz, spurious at} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -60 dBc (nom.) -60 dBc (nom.) -60 dBc (nom.)                                   |
|                                             | $\begin{array}{l} f < 4 \text{ GHz, spurious at} \\ f_{\text{in}} + 3615.075 \text{ MHz} \\ 4 \text{ GHz} \leq f < 8 \text{ GHz, spurious at} \\ f_{\text{in}} - 415.075 \text{ MHz} \\ 8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ f_{\text{in}} + 2015.075 \text{ MHz} \\ 8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ f_{\text{in}} + 2791.175 \text{ MHz} \\ 8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ f_{\text{in}} + 2791.175 \text{ MHz} \\ 8 \text{ GHz} \leq f < 20 \text{ GHz, spurious at} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -60 dBc (nom.)                                                                 |
|                                             | $\begin{split} f_{\text{in}} + 3615.075 &\text{MHz} \\ 4 &\text{GHz} \leq f < 8 \text{GHz}, \text{spurious at} \\ f_{\text{in}} - 415.075 \text{MHz} \\ 8 &\text{GHz} \leq f < 20 \text{GHz}, \text{spurious at} \\ f_{\text{in}} + 2015.075 \text{MHz} \\ 8 &\text{GHz} \leq f < 20 \text{GHz}, \text{spurious at} \\ f_{\text{in}} + 2791.175 \text{MHz} \\ 8 &\text{GHz} \leq f < 20 \text{GHz}, \text{spurious at} \\ 8 \text{GHz} \leq f < 20 \text{GHz}, \text{spurious at} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -60 dBc (nom.)                                                                 |
|                                             | 4 GHz $\leq$ f $<$ 8 GHz, spurious at $f_{in} - 415.075$ MHz<br>8 GHz $\leq$ f $<$ 20 GHz, spurious at $f_{in} + 2015.075$ MHz<br>8 GHz $\leq$ f $<$ 20 GHz, spurious at $f_{in} + 2791.175$ MHz<br>8 GHz $\leq$ f $<$ 20 GHz, spurious at $f_{in} + 2791.175$ MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -60 dBc (nom.)                                                                 |
|                                             | $f_{in}$ – 415.075 MHz<br>8 GHz ≤ f < 20 GHz, spurious at<br>$f_{in}$ + 2015.075 MHz<br>8 GHz ≤ f < 20 GHz, spurious at<br>$f_{in}$ + 2791.175 MHz<br>8 GHz ≤ f < 20 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -60 dBc (nom.)                                                                 |
|                                             | 8 GHz ≤ f < 20 GHz, spurious at<br>f <sub>in</sub> + 2015.075 MHz<br>8 GHz ≤ f < 20 GHz, spurious at<br>f <sub>in</sub> + 2791.175 MHz<br>8 GHz ≤ f < 20 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , ,                                                                            |
| -                                           | $f_{in}$ + 2015.075 MHz<br>8 GHz $\leq$ f $<$ 20 GHz, spurious at<br>$f_{in}$ + 2791.175 MHz<br>8 GHz $\leq$ f $<$ 20 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                                                            |
|                                             | 8 GHz ≤ f < 20 GHz, spurious at<br>f <sub>in</sub> + 2791.175 MHz<br>8 GHz ≤ f < 20 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> + 2791.175 MHz<br>8 GHz ≤ f < 20 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -60 dBc (nom.)                                                                 |
|                                             | 8 GHz ≤ f < 20 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |
|                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                              |
| _                                           | f <sub>in</sub> + 3615.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -60 dBc (nom.)                                                                 |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |
|                                             | 20 GHz ≤ f < 26.5 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> – 2015.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,                                                                            |
|                                             | 26.5 GHz ≤ f < 28.5 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> – 3615.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |
|                                             | models .23/.36/.44/.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |
|                                             | f < 4.2 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> + 2791.175 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,                                                                            |
|                                             | f < 4.2 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> + 3615.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,                                                                            |
|                                             | 4.2 GHz ≤ f < 8 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> – 415.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                              |
|                                             | 8 GHz ≤ f < 28 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> + 2015.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                              |
|                                             | 8 GHz ≤ f < 28 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> + 2791.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                              |
|                                             | 8 GHz ≤ f < 28 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> + 3615.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()                                                                             |
|                                             | 28 GHz ≤ f < 44 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> – 2791.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                              |
|                                             | 28 GHz ≤ f < 44 GHz, spurious at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -60 dBc (nom.)                                                                 |
|                                             | f <sub>in</sub> – 3615.075 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                              |
| Other interfering signals, related to local | f = receive frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
|                                             | model .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |
|                                             | Δf ≥ 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -60 dBc (nom.)                                                                 |
|                                             | models .06/.13/.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |
|                                             | $\Delta f \ge 300 \text{ kHz}, \Delta f \le 1600 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -60 dBc (nom.) except otherwise stated                                         |
|                                             | Δf ≤ −422.5 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -35 dBc (nom.)                                                                 |
|                                             | 21440 MHz ≤ f <sub>in</sub> < 23400 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ()                                                                             |
|                                             | $\Delta f \ge 1115 \text{ MHz},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -40 dBc (nom.)                                                                 |
|                                             | 23400 MHz $\leq$ f <sub>in</sub> $<$ 24400 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()                                                                             |
|                                             | models .23/.36/.44/.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |
|                                             | Δf ≥ 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -60 dBc (nom.) except otherwise stated                                         |
|                                             | Δf ≥ 431 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -50 dBc (nom.)                                                                 |
|                                             | 11500 MHz ≤ f <sub>in</sub> ≤ 12000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33 450 (1101111)                                                               |
|                                             | $\Delta f \le -230 \text{ MHz},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -50 dBc (nom.)                                                                 |
|                                             | 14000 MHz $\leq$ f <sub>in</sub> $\leq$ 14300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oo abo (nonn)                                                                  |
|                                             | $\Delta f \ge 268 \text{ MHz},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -50 dBc (nom.)                                                                 |
|                                             | 14700 MHz ≤ f <sub>in</sub> ≤ 15500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oo abo (nom.)                                                                  |
|                                             | $\Delta f \le -187 \text{ MHz},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -40 dBc (nom.)                                                                 |
|                                             | 16500 MHz $\leq$ f <sub>in</sub> $\leq$ 17300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To abo (nom.)                                                                  |
|                                             | $\Delta f \le -937 \text{ MHz},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -40 dBc (nom.)                                                                 |
|                                             | ΔI ≤ −937 MHZ,<br>18900 MHz ≤ f <sub>in</sub> ≤ 22000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |
|                                             | $\Delta f \le -337 \text{ MHz},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -50 dBc (nom.)                                                                 |
|                                             | ΔI ≤ −337 MH2,<br>29900 MHz ≤ f <sub>in</sub> ≤ 31000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30 abc (nom.)                                                                 |
| Residual spurious response                  | input matched with 50 $\Omega$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -90 dBm (nom.)                                                                 |
| ·                                           | without input signal, RBW ≤ 30 kHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oo abiii (iioiii.)                                                             |
|                                             | $f \ge 3 \text{ MHz}, \text{ RF attenuation} = 0 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |

| Level display                          |                                                                        |                                                     |
|----------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|
| Logarithmic level axis                 |                                                                        | 1/2/3/5/10/20/30/50/100/120/150 dB,<br>10 divisions |
| Parameter at a 22                      |                                                                        | 10 0.110.010                                        |
| Linear level axis                      |                                                                        | 0 % to 100 %, 10 divisions                          |
| Number of traces                       |                                                                        | 2                                                   |
| Trace detectors                        |                                                                        | max. peak, min. peak, auto peak, sample, RMS        |
| Trace functions                        |                                                                        | clear/write, max. hold, min. hold, average,         |
|                                        |                                                                        | view                                                |
| Setting range of reference level       |                                                                        | -130 dBm to +30 dBm                                 |
| Units of level axis                    |                                                                        | dBm, dBmV, dBμV, V, W                               |
| Level measurement uncertainty          |                                                                        |                                                     |
| Absolute level uncertainty at 100 MHz  | temperature range from +20 °C to +30 °C                                | < 0.3 dB                                            |
| Frequency response 3                   | temperature range from +20 °C to +30 °C                                |                                                     |
|                                        | 100 Hz ≤ f < 5 kHz                                                     | < 3.0 dB (nom.)                                     |
|                                        | (only with R&S® FPH-B29 option                                         | , ,                                                 |
|                                        | installed, preamplifier off and                                        |                                                     |
|                                        | attenuator settings ≤ 15 dB)                                           |                                                     |
|                                        | 5 kHz ≤ f < 10 MHz                                                     | < 1.5 dB (nom.)                                     |
|                                        | 10 MHz ≤ f < 8 GHz <sup>4</sup>                                        | < 1 dB                                              |
|                                        | 8 GHz ≤ f < 20 GHz                                                     | < 1.5 dB                                            |
|                                        | 20 GHz ≤ f ≤ 44 GHz                                                    | < 2 dB                                              |
| Attenuator uncertainty                 |                                                                        | < 0.3 dB                                            |
| Uncertainty of reference level setting |                                                                        | < 0.1 dB (nom.)                                     |
| Display nonlinearity                   | SNR > 16 dB, 0 dB to -50 dB,                                           | < 0.3 dB                                            |
| -, -,                                  | logarithmic level display                                              |                                                     |
| Bandwidth switching uncertainty        | reference: RBW = 10 kHz                                                | < 0.1 dB (nom.)                                     |
| Total measurement uncertainty          | 95 % confidence level, +20 °C to +30 °C,                               |                                                     |
| . c.acacaromone anortamey              | SNR > 16 dB, 0 dB to –50 dB below reference level, RF attenuation auto |                                                     |
|                                        | 10 MHz ≤ f ≤ 44 GHz                                                    | < 1.25 dB, 0.5 dB (typ.)                            |

# **Trigger functions**

| Trigger                          |                                   |                                     |
|----------------------------------|-----------------------------------|-------------------------------------|
| Trigger source                   |                                   | free run, video, external           |
| External trigger level threshold | low → high transition             | 2.4 V                               |
|                                  | $high \rightarrow low transition$ | 0.7 V                               |
|                                  | maximum                           | 3.0 V                               |
| Gated trigger                    |                                   |                                     |
| Gate delay                       |                                   | 1 μs to 100 s, min. resolution 1 μs |
|                                  |                                   | (or 1 % of delay)                   |
| Gate length                      |                                   | 1 μs to 100 s, min. resolution 1 μs |
|                                  |                                   | (or 1 % of gate length)             |

 $<sup>^3</sup>$  For specifications with R&S°FPH-B100 option installed, see section "R&S°FPH-B100 N type RF input connector for model .26".

 $<sup>^4</sup>$  10 MHz to 50 MHz frequency response is < 0.5 dB after alignment with R&S $^{\! 8}$ FPH-K35 option.

# Inputs and outputs

| RF input                              |                        |                                        |
|---------------------------------------|------------------------|----------------------------------------|
| Impedance                             |                        | 50 Ω (nom.)                            |
| Connector                             | models .02/.06/.13/.23 | type N, female                         |
|                                       | models .26/.36         | PC 3.5 mm male                         |
|                                       | models .44/.54         | PC 2.92 mm male                        |
| VSWR <sup>3</sup>                     | model .02              |                                        |
|                                       | 100 kHz ≤ f ≤ 1 GHz    | < 1.5 (nom.)                           |
|                                       | 1 GHz < f ≤ 4 GHz      | < 2 (nom.)                             |
|                                       | models .06/.13/.26     |                                        |
|                                       | 100 kHz ≤ f ≤ 100 MHz  | < 2 (nom.)                             |
|                                       | 100 MHz ≤ f ≤ 1 GHz    | < 1.5 (nom.)                           |
|                                       | 1 GHz < f ≤ 31 GHz     | < 2 (nom.)                             |
|                                       | models .23/.36/.44/.54 |                                        |
|                                       | 100 kHz ≤ f < 4.2 GHz  | < 1.5 (nom.)                           |
|                                       | 4.2 GHz ≤ f < 22 GHz   | < 1.9 (nom.)                           |
|                                       | 22 GHz ≤ f < 44 GHz    | < 2.2 (nom.)                           |
| Input attenuator                      | RF input only          | 0 dB to 40 dB, in 5 dB steps           |
| AF output                             | put 5y                 | 0 a2 to 10 a2, iii o a2 otopo          |
| AF demodulation types                 |                        | AM and FM                              |
| Connector                             |                        | 3.5 mm mini jack                       |
| Output impedance                      |                        | 32 Ω (nom.)                            |
| Voltage (open circuit)                |                        | adjustable from 0 V to > 100 mV (RMS)  |
| Tracking generator (models .23/.36    | 6/.54 only)            | adjustasis nom o r to r roo m r (rame) |
| Frequency range                       | ,,,,                   | 100 kHz to model maximum frequency     |
| · · · · · · · · · · · · · · · · · · · |                        | (usable to 30 kHz)                     |
| Port output power                     | 100 kHz ≤ f < 10 MHz   | -10 dBm to -30 dBm in 1 dB steps (nom  |
|                                       | 10 MHz ≤ f < 30 GHz    | 0 dBm to -25 dBm in 1 dB steps (nom.)  |
|                                       | 30 GHz ≤ f < 32 GHz    | -10 dBm to -30 dBm in 1 dB steps (nom  |
|                                       | 32 GHz ≤ f < 40 GHz    | 0 dBm to -25 dBm in 1 dB steps (nom.)  |
|                                       | 40 GHz ≤ f ≤ 44 GHz    | -10 dBm to -30 dBm in 1 dB steps (nom. |
| VSWR                                  | 100 kHz ≤ f < 150 MHz  | < 2.0 (nom.)                           |
|                                       | 150 MHz ≤ f < 8 GHz    | < 1.5 (nom.)                           |
|                                       | 8 GHz ≤ f < 34 GHz     | < 1.7 (nom.)                           |
|                                       | 34 GHz ≤ f ≤ 44 GHz    | < 2.0 (nom.)                           |
| External reference, external trigger  |                        | - 2.0 (10111)                          |
| Connector                             |                        | BNC, 50 Ω                              |
| Mode                                  |                        | external reference, external trigger   |
| External reference                    | required level         | 0 dBm                                  |
| LAGINALIGIGIGI                        | frequired level        | 10 MHz                                 |
| <b>-</b>                              | low → high transition  | 2.4 V                                  |
| External trigger threshold            | low high transition    |                                        |

### **General data**

| Manual operation |                                                  |                                                                                                                                    |
|------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Languages        |                                                  | Chinese, Chinese Traditional, English,<br>French, German, Italian, Hungarian,<br>Japanese, Korean, Portuguese, Russian,<br>Spanish |
| Remote control   |                                                  |                                                                                                                                    |
| Command set      |                                                  | SCPI 1997.0                                                                                                                        |
| LAN interface    |                                                  | 10BASE-T/100BASE-T, RJ-45                                                                                                          |
| USB              |                                                  | mini B plug, version 2.0                                                                                                           |
| Display          |                                                  |                                                                                                                                    |
| Resolution       |                                                  | WVGA, 800 x 480 pixel                                                                                                              |
| Audio            |                                                  |                                                                                                                                    |
| Speaker          |                                                  | internal, external headphone supported                                                                                             |
| USB interface    |                                                  | type A plug, version 2.0                                                                                                           |
|                  | number of interfaces                             | 2                                                                                                                                  |
| Mass memory      | not supplied                                     | USB flash drive, USB version 1.1 or 2.0, size ≤ 32 Gbyte                                                                           |
|                  |                                                  | microSD card, size ≤ 32 Gbyte                                                                                                      |
| Data storage     | internal                                         | > 160 instrument settings and traces                                                                                               |
| · ·              | on USB flash drive or microSD card,<br>≥ 1 Gbyte | > 10000 instrument settings and traces                                                                                             |

| T                                |                                                                    | 40.00 +55.00                                                        |
|----------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Temperature range                | operating                                                          | -10 °C to +55 °C                                                    |
|                                  | storage                                                            | −20 °C to +50 °C                                                    |
| <b>O</b> !!! !!                  | battery charging mode                                              | 0 °C to +40 °C                                                      |
| Climatic loading                 | relative humidity                                                  | +25 °C/+55 °C at 95 % relative humidity, in line with EN 60068-2-30 |
|                                  | protection class                                                   | IP51                                                                |
| Altitude                         | operating with battery                                             | 15000 m (49210 ft)                                                  |
|                                  | operating with AC to DC adapter                                    | 3000 m (9840 ft)                                                    |
| Mechanical resistance            |                                                                    |                                                                     |
| Vibration                        | sinusoidal                                                         | in line with EN 60068-2-6,                                          |
|                                  |                                                                    | MIL-PRF-28800F Class 2                                              |
|                                  | random                                                             | in line with EN 60068-2-64,                                         |
|                                  |                                                                    | MIL-PRF-28800F Class 2                                              |
| Shock                            |                                                                    | 40 g shock spectrum,                                                |
|                                  |                                                                    | in line with MIL-STD-810G, method 516.6                             |
|                                  |                                                                    | procedure I, MIL-PRF-28800F                                         |
| Power supply                     |                                                                    |                                                                     |
| R&S®HA-Z301 AC power supply      | input specifications                                               | 100 V to 240 V AC, 50 Hz/60 Hz,                                     |
|                                  |                                                                    | 1.0 A to 0.5 A                                                      |
|                                  | output specifications                                              | 15 V, 2.67 A, max. 40 W                                             |
|                                  | operating temperature range                                        | −30 °C to +60 °C                                                    |
|                                  | storage temperature range                                          | −40 °C to +85 °C                                                    |
|                                  | test marks                                                         | CE, UL, PSE, TUV                                                    |
| External DC voltage              |                                                                    | 14.65 V to 15.45 V                                                  |
| Battery                          |                                                                    | lithium-ion battery                                                 |
| Capacity                         | R&S®HA-Z306 version E                                              | 72 Wh                                                               |
|                                  | R&S®HA-Z306 version F and above                                    | 74.5 Wh                                                             |
| Voltage                          | R&S®HA-Z306 version E                                              | 11.25 V (nom.)                                                      |
|                                  | R&S®HA-Z306 version F and above                                    | 10.8 V (nom.)                                                       |
| Operating time with new,         | R&S®HA-Z306                                                        |                                                                     |
| fully charged battery            | model .02                                                          | 8 h                                                                 |
|                                  | model .06                                                          | 7 h                                                                 |
|                                  | models .13/.26                                                     | 6 h                                                                 |
|                                  | models .23/.36/.44/.54                                             | 4.5 h                                                               |
| Charging time                    | instrument switched off or charge with R&S®HA-Z303 battery charger | 3 h                                                                 |
|                                  | instrument switched on                                             | 5 h                                                                 |
| Life time                        | charging cycles                                                    | > 75 % or more of its initial capacity after 300 charges/discharges |
| Power consumption                | model .02                                                          | 8 W (meas.)                                                         |
| •                                | model .06                                                          | 10 W (meas.)                                                        |
|                                  | models .13/.26                                                     | 12 W (meas.)                                                        |
|                                  | models .23/.36/.44/.54                                             | 16 W (meas.)                                                        |
| Safety                           |                                                                    | IEC 61010-1:2010/AMD:2016,                                          |
|                                  |                                                                    | EN 61010-1:2010/A1:2019,                                            |
|                                  |                                                                    | UL. 61010-1 (third edition),                                        |
|                                  |                                                                    | CAN/CSA-C22.2 No. 61010-1:12                                        |
| Test mark                        |                                                                    | VDE, cCSAus, KC                                                     |
| EMC                              | in line with European EMC Directive                                | • EN 61326-1                                                        |
|                                  | 2014/30/EU                                                         | • EN 61326-1 table 2                                                |
|                                  |                                                                    | (immunity, industrial)                                              |
|                                  |                                                                    | <ul> <li>CISPR 11/EN 55011/group 1</li> </ul>                       |
|                                  |                                                                    | Class B (emission)                                                  |
| Dimensions                       | W×H×D                                                              | 202 mm × 294 mm × 76 mm                                             |
|                                  |                                                                    | (8.0 in × 11.6 in × 3 in)                                           |
| Weight                           | models .02/.06/.13/.26                                             | 2.5 kg (5.5 lb)                                                     |
|                                  | models .23/.36/.44/.54                                             | 3.2 kg (7.1 lb)                                                     |
| Recommended calibration interval |                                                                    | 1 year                                                              |

# R&S®FPH-B100 type N RF input connector for model .26

| Frequency range    | model .26 with R&S® FPH-B100 optic<br>(R&S®FPH-B31 option is not availabl<br>combination with R&S®FPH-B100 op | le in           |
|--------------------|---------------------------------------------------------------------------------------------------------------|-----------------|
| Frequency response | temperature range from +20 °C to +3                                                                           | ,               |
|                    | 5 kHz ≤ f < 10 MHz                                                                                            | < 1.5 dB (nom.) |
|                    | 10 MHz ≤ f < 8 GHz                                                                                            | < 1 dB          |
|                    | 8 GHz ≤ f < 20 GHz                                                                                            | < 2 dB          |
|                    | 20 GHz ≤ f ≤ 26.5 GHz                                                                                         | < 2.5 dB        |
| VSWR               | 100 kHz ≤ f ≤ 100 MHz                                                                                         | < 2 (nom.)      |
|                    | 100 MHz < f ≤ 1 GHz                                                                                           | < 1.5 (nom.)    |
|                    | 1 GHz < f ≤ 15.7 GHz                                                                                          | < 2 (nom.)      |
|                    | 15.7 GHz < f ≤ 26.5 GHz                                                                                       | < 2.7 (nom.)    |

# R&S®FPH-K7 modulation analysis

| Measurement of analog modulati | ion signals (AM, FM)                             |                                                                                                           |
|--------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Center frequency               | model .02                                        | 500 kHz to 2 GHz                                                                                          |
|                                | with R&S®FPH-B3 option installed                 | 500 kHz to 3 GHz                                                                                          |
|                                | with R&S®FPH-B3 and R&S®FPH-B4 options installed | 500 kHz to 4 GHz                                                                                          |
|                                | model .06                                        | 500 kHz to 6 GHz                                                                                          |
|                                | with R&S®FPH-B8 option installed                 | 500 kHz to 8 GHz                                                                                          |
|                                | models .13/.23 (with tracking generator)         | 500 kHz to 13.6 GHz                                                                                       |
|                                | with R&S®FPH-B20 option installed                | 500 kHz to 20 GHz                                                                                         |
|                                | models .26/.36 (with tracking generator)         | 500 kHz to 26.5 GHz                                                                                       |
|                                | with R&S®FPH-B31 option installed                | 500 kHz to 31 GHz                                                                                         |
|                                | models .44/.54 (with tracking generator)         | 500 kHz to 44 GHz                                                                                         |
| Demodulation bandwidth         |                                                  | 2 MHz, 1 MHz, 500 kHz, 300 kHz,                                                                           |
|                                |                                                  | 200 kHz, 100 kHz, 50 kHz, 30 kHz,                                                                         |
|                                |                                                  | 20 kHz, 10 kHz (nom.)                                                                                     |
| Bandwidth accuracy             |                                                  | < ± 5% (nom.)                                                                                             |
| Display                        | AM                                               | carrier power, carrier frequency offset,<br>AM modulation depth, modulation<br>frequency, THD, SINAD, SNR |
|                                | FM                                               | carrier power, carrier frequency offset,<br>FM deviation, modulation frequency, THD,<br>SINAD, SNR        |

| Carrier power                      |                                    |  |
|------------------------------------|------------------------------------|--|
| Carrier power measurement accuracy | add 0.2 dB, see section level      |  |
|                                    | measurement uncertainty on page 14 |  |
| Display resolution                 | 0.1 dB                             |  |

| AF (modulation frequency) 5 |                                  |                                  |
|-----------------------------|----------------------------------|----------------------------------|
| Range                       | AM                               | 20 Hz to 100 kHz (nom.)          |
|                             | FM                               | 20 Hz to 200 kHz (nom.)          |
| Resolution                  |                                  | 1 Hz                             |
| Measurement uncertainty     | 1 kHz ≤ AF ≤ 200 kHz             | ±(1 % of measured value) (nom.)  |
|                             | 20 Hz ≤ AF < 1 kHz               | ±1 Hz (nom.)                     |
| AF filters                  |                                  |                                  |
| Lowpass                     | audio decimation                 | bypass, 1/10, 1/30, 1/100 (nom.) |
| Deemphasis                  | FM demodulation and demodulation | off, 50 μs, 75 μs (nom.)         |
|                             | bandwidth 200 kHz and 300 kHz    |                                  |

| AM demodulation <sup>6</sup> |                  |                     |
|------------------------------|------------------|---------------------|
| Measurement range            | modulation depth | 2 % to 100 % (nom.) |
| Modulation depth uncertainty |                  | ±(4 %) (nom.)       |

<sup>&</sup>lt;sup>5</sup> Minimum and maximum detectable audio frequency and harmonics depend on the demodulation bandwidth and audio filter settings.

<sup>&</sup>lt;sup>6</sup> Modulation frequency 1 kHz sine, AM modulation depth 50 %, carrier level 0 dBm, center frequency = 499 MHz, reference level 6 dBm, demodulation bandwidth = 20 kHz, SNR > 60 dB, audio filter = bypass.

| FM demodulation <sup>7</sup> |                     |                                        |
|------------------------------|---------------------|----------------------------------------|
| Measurement range            | frequency deviation | 10 kHz to 400 kHz (nom.),              |
|                              |                     | max. 0.4 x demodulation bandwidth      |
| Deviation uncertainty        |                     | $\pm$ (0.04 × (AF + deviation)) (nom.) |

| Modulation distortion 5, 6, 7     |                                          |                                                                     |
|-----------------------------------|------------------------------------------|---------------------------------------------------------------------|
| Measurement functions             |                                          | THD, SINAD                                                          |
| Measurement range                 |                                          | -50 dB to 0 dB (THD)                                                |
|                                   |                                          | 0 dB to 50 dB (SINAD, AM)                                           |
|                                   |                                          | 0 dB to 40 dB (SINAD, FM)                                           |
| Display resolution                |                                          | 0.1 dB                                                              |
| Measurement uncertainty           |                                          | 1 dB (nom.)                                                         |
| AF frequency range                |                                          | 20 Hz to 100 kHz (nom.)                                             |
| Measurement of digital modulation | on signals (ASK, FSK)                    |                                                                     |
| Center frequency                  | model .02                                | 10 MHz to 2 GHz                                                     |
|                                   | with R&S®FPH-B3 option installed         | 10 MHz to 3 GHz                                                     |
|                                   | with R&S®FPH-B3 and R&S®FPH-B4           | 10 MHz to 4 GHz                                                     |
|                                   | options installed                        |                                                                     |
|                                   | model .06                                | 10 MHz to 6 GHz                                                     |
|                                   | with R&S®FPH-B8 option installed         | 10 MHz to 8 GHz                                                     |
|                                   | models .13/.23 (with tracking generator) | 10 MHz to 13.6 GHz                                                  |
|                                   | with R&S®FPH-B20 option installed        | 10 MHz to 20 GHz                                                    |
|                                   | models .26/.36 (with tracking generator) | 10 MHz to 26.5 GHz                                                  |
|                                   | with R&S®FPH-B31 option installed        | 10 MHz to 31 GHz                                                    |
|                                   | models .44/.54 (with tracking generator) | 10 MHz to 44 GHz                                                    |
| Demodulation bandwidth            |                                          | 400 Hz to 2 MHz                                                     |
|                                   |                                          | auto-set corresponding to signal and                                |
|                                   |                                          | demodulation bandwidth requirements                                 |
| Display                           | ASK diagram                              | eye diagram, symbols, modulation depth, modulation error            |
|                                   | ASK numerical results                    | carrier power, carrier frequency error, modulation depth and index, |
|                                   |                                          | modulation error                                                    |
|                                   | FSK diagram                              | eye diagram, symbols, modulation                                    |
|                                   |                                          | deviation, modulation error                                         |
|                                   | FSK numerical results                    | carrier power, carrier frequency error,                             |
|                                   |                                          | frequency deviation, modulation error,                              |
|                                   |                                          | magnitude error                                                     |

| Demodulation parameters             |                 |                                           |
|-------------------------------------|-----------------|-------------------------------------------|
| Modulation and demodulation filters | transmit filter | root raised cosine (RRC)                  |
|                                     |                 | raised cosine (RC)                        |
|                                     |                 | Gaussian (GAUSS)                          |
|                                     |                 | unfiltered <sup>8</sup>                   |
|                                     |                 | (Measurement and reference filters are    |
|                                     |                 | internally adapted to signal parameters.) |
| Points/symbol                       |                 | 4, 8, 16,                                 |
|                                     |                 | internally adapted to signal parameters   |
| Filter length                       |                 | internally adapted to signal parameters   |
| Demodulation length                 |                 | 20 symbols to max. 1000 symbols           |
|                                     |                 | (at 4 points/symbol)                      |

| Carrier power                      |                                    |
|------------------------------------|------------------------------------|
| Carrier power measurement accuracy | add 0.2 dB, see section level      |
|                                    | measurement uncertainty on page 14 |
| Carrier power range                | -30 dBm to +20 dBm (nom.)          |
| Display resolution                 | 0.1 dB                             |

\_

Modulation frequency 1 kHz sine, FM deviation = 75 kHz, carrier level 0 dBm, center frequency = 499 MHz, reference level 6 dBm, demodulation bandwidth = 300 kHz, SNR > 60 dB, audio filter = 1/10, deemphasis = off.

 $<sup>^{8}\,\,</sup>$  Reference signal is generated with a Gaussian filter, BT = 3.

| ASK demodulation <sup>9</sup> |                  |                         |
|-------------------------------|------------------|-------------------------|
| Measurement range symbol rate |                  | 1 kHz to 100 kHz (nom.) |
| _                             | modulation depth | 5 % to 95 % (nom.)      |
| Modulation depth uncertainty  |                  | ±(4 %) (nom.)           |
| Display resolution            |                  | 0.1 %                   |

| FSK demodulation <sup>10</sup> |                     |                             |
|--------------------------------|---------------------|-----------------------------|
| Measurement range              | symbol rate         | 1 kHz to 100 kHz (nom.)     |
|                                | frequency deviation | 1 kHz to 400 kHz (nom.)     |
|                                | symbol rate         |                             |
|                                | 1 kHz to 20 kHz     | 1 ≤ beta <sup>11</sup> ≤ 20 |
|                                | > 20 kHz to 50 kHz  | 1 ≤ beta ≤ 8                |
|                                | > 50 kHz to 100 kHz | 1 ≤ beta ≤ 4                |
| Accuracy                       |                     | ± (4 %) (nom.)              |
| Display resolution             |                     | 0.1 Hz                      |

### R&S®FPH-K19 channel power meter

| Frequency range                       | model .02                                | 5 kHz to 2 GHz                                 |
|---------------------------------------|------------------------------------------|------------------------------------------------|
|                                       | with R&S®FPH-B3 option installed         | 5 kHz to 3 GHz                                 |
|                                       | with R&S®FPH-B3 and R&S®FPH-B4           | 5 kHz to 4 GHz                                 |
|                                       | options installed                        |                                                |
|                                       | model .06                                | 5 kHz to 6 GHz                                 |
|                                       | with R&S®FPH-B8 option installed         | 5 kHz to 8 GHz                                 |
|                                       | models .13/.23 (with tracking generator) | 5 kHz to 13.6 GHz                              |
|                                       | with R&S®FPH-B20 option installed        | 5 kHz to 20 GHz                                |
|                                       | models .26/.36 (with tracking generator) | 5 kHz to 26.5 GHz                              |
|                                       | with R&S®FPH-B31 option installed        | 5 kHz to 31 GHz                                |
|                                       | models .44/.54 (with tracking generator) | 5 kHz to 44 GHz                                |
| Channel bandwidth                     |                                          | 100 kHz to 1 GHz                               |
| Amplitude                             |                                          | offset, dB relative, zeroing                   |
| Unit                                  |                                          | dBm, W                                         |
| Limits                                |                                          | on/off, upper limit, lower limit, beep on fail |
| Measurement range                     |                                          | -120 dBm to +30 dBm                            |
| Level measurement uncertainty         |                                          |                                                |
| Absolute level uncertainty at 100 MHz | +20 °C to +30 °C                         | < 0.3 dB                                       |
| Frequency response (+20 °C to +30 °C) | 100 kHz ≤ f < 10 MHz                     | < 1.5 dB (nom.)                                |
|                                       | 10 MHz ≤ f ≤ 4 GHz                       | < 1.25 dB                                      |

### R&S®FPH-K29 pulse measurements with power sensor

In combination with one of the R&S®NRP-Z81, R&S®NRP-Z85 or R&S®NRP-Z86 power sensors, the R&S®Spectrum Rider FPH supports measurements on pulsed signals. The achievable RF performance is documented in the data sheet specifications of the R&S®NRP-Z81, R&S®NRP-Z85 and R&S®NRP-Z86 power sensors. The list below shows which measurements are supported by the R&S®FPH-K29.

| Measurements            | R&S®FPH-K29 |
|-------------------------|-------------|
| Pulse power parameters  | •           |
| Peak power              | •           |
| Pulse top power         | •           |
| Average power           | •           |
| Base power              | •           |
| Minimum power           | •           |
| Positive overshoot      | •           |
| Negative overshoot      | •           |
| Pulse timing parameters | •           |
| Pulse duration          | •           |
| Pulse period            | •           |
| Pulse start/stop time   | •           |
| Rise/fall time          | •           |
| Duty cycle              | •           |

 $<sup>^{9}</sup>$  ASK modulation index 50 %, symbol rate = 100 kHz, Gaussian BT = 1.0, modulation signal PSBS.

<sup>&</sup>lt;sup>10</sup> FSK modulation deviation 100 kHz, symbol rate = 100 kHz, Gaussian BT = 1.0, modulation signal PRBS.

<sup>&</sup>lt;sup>11</sup> Beta is the ratio of frequency deviation to symbol rate.

# R&S®FPH-K43 receiver mode and channel scan measurement application

The specifications below apply to the R&S®Spectrum Rider FPH. They are based on the data sheet specifications of the R&S®Spectrum Rider FPH, have not been checked separately and are not verified during instrument calibration.

| Measurements              | R&S®FPH-K43 |
|---------------------------|-------------|
| Fixed frequency           | •           |
| Frequency scan            | •           |
| Channel scan              | •           |
| User defined channel list | •           |
| EMI precompliance         | •           |
| CISPR bandwidths          | •           |
| CISPR detectors           | •           |

| Frequency range            |                        | see basic instrument                     |
|----------------------------|------------------------|------------------------------------------|
| Measurement modes          |                        | fixed frequency, frequency scan, channel |
|                            |                        | scan                                     |
| Frequency scan stepsize    |                        | ·                                        |
| Scan stepsize              |                        | 100 Hz to max. frequency                 |
| Maximum number of steps    |                        | 10000                                    |
| Channel scan               |                        | ·                                        |
| Channel spacing            |                        | user definable                           |
| Maximum number of channels |                        | 10000                                    |
| Resolution bandwidths      | -3 dB bandwidths       | 1 Hz to 3 MHz in 1/3 sequence            |
|                            | -6 dB CISPR bandwidths | 200 Hz, 9 kHz, 120 kHz, 1 MHz            |
| Detectors                  |                        | max. peak, average, RMS, quasi-peak      |
| Level                      |                        | see basic instrument                     |

### R&S®FPH-K57 advanced gated trigger measurement

The specifications below apply to the R&S®Spectrum Rider FPH. They are based on the data sheet specifications of the R&S®Spectrum Rider FPH, have not been checked separately and are not verified during instrument calibration. Advanced gated trigger measurements are used for analysis of periodic time domain signal measurements and applicable only to the below mentioned measurement modes.

| Measurements                          | R&S®FPH-K57 |
|---------------------------------------|-------------|
| Occupied bandwidth (OBW)              | •           |
| Spectrum emission mask (SEM)          | •           |
| Adjacent channel leakage ratio (ACLR) | •           |

| Frequency range       |                                           | see basic instrument            |
|-----------------------|-------------------------------------------|---------------------------------|
| Resolution bandwidths | -3 dB bandwidths                          | 30 kHz to 3 MHz in 1/3 sequence |
| Video bandwidths      |                                           | 30 kHz to 3 MHz in 1/3 sequence |
| Detectors             |                                           | see basic instrument            |
| Auto gate detection   | minimum distance, high level to low level | 10 dB                           |

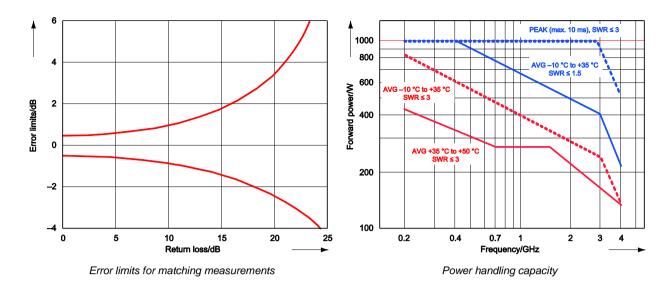
### R&S®HA-Z350 log-periodic OEM antenna

| Frequency range      |                              | 700 MHz to 4 GHz                                               |
|----------------------|------------------------------|----------------------------------------------------------------|
| Gain                 |                              | 4 dBi (typ.)                                                   |
| Impedance            |                              | 50 Ω                                                           |
| VSWR                 |                              | < 1:2 (nom.)                                                   |
| Connector type       |                              | SMA (f)                                                        |
| Dimensions           | $W \times H \times D$        | 340 mm × 200 mm × 25 mm                                        |
|                      |                              | $(13.3 \text{ in} \times 7.9 \text{ in} \times 1 \text{ in})$  |
| Weight               |                              | 270 g (0.6 lb)                                                 |
| Accessories supplied | hardcase with foam, typical  | calibration data in 10 MHz steps, pistol grip with mini-tripod |
|                      | function, one set of SMA too | lset                                                           |

# R&S®FSH-Z14 directional power sensor <sup>12</sup>

| Frequency range                |                                                                | 25 MHz to 1 GHz |
|--------------------------------|----------------------------------------------------------------|-----------------|
| Power measurement range        |                                                                | 30 mW to 300 W  |
| VSWR referenced to 50 $\Omega$ |                                                                | < 1.06          |
| Power handling capacity        | depending on temperature and matching (see diagram on page 17) | 100 W to 1000 W |
| Insertion loss                 |                                                                | < 0.06 dB       |
| Directivity                    |                                                                | > 30 dB         |

| Average power                      |                                      |                                        |
|------------------------------------|--------------------------------------|----------------------------------------|
| Power measurement range            |                                      |                                        |
| CW, FM, PM, FSK, GMSK              | CF: ratio of peak envelope           | 30 mW to 300 W                         |
| Modulated signals                  | power to average power               | 30 mW to 300 W/CF                      |
| Measurement uncertainty            |                                      |                                        |
| 25 MHz to 40 MHz                   | sine signal                          | 4.0 % of measured value (0.17 dB)      |
| 40 MHz to 1 GHz                    | +18 °C to +28 °C, no zero offset     | 3.2 % of measured value (0.14 dB)      |
| Zero offset                        | after zeroing                        | ±4 mW                                  |
| Range of typical measurement error | FM, PM, FSK, GMSK                    | 0 % of measured value (0 dB)           |
| with modulation                    | AM (80 %)                            | ±3 % of measured value (±0.13 dB)      |
|                                    | two CW carriers with identical power | ±2 % of measured value (±0.09 dB)      |
|                                    | EDGE, TETRA                          | ±0.5 % of measured value (±0.02 dB) 13 |
| Temperature coefficient            | 25 MHz to 40 MHz                     | 0.40 %/K (0.017 dB/K)                  |
|                                    | 40 MHz to 1 GHz                      | 0.25 %/K (0.011 dB/K)                  |


| Maximum peak envelope power                 |                                                            |                                          |  |
|---------------------------------------------|------------------------------------------------------------|------------------------------------------|--|
| Power measurement range                     |                                                            |                                          |  |
| Video bandwidths                            | 4 kHz                                                      | 0.4 W to 300 W                           |  |
|                                             | 200 kHz                                                    | 1 W to 300 W                             |  |
|                                             | 600 kHz                                                    | 2 W to 300 W                             |  |
| Measurement uncertainty                     | same as for average power plus effect of peak hold circuit | +18 °C to +28 °C                         |  |
| Error limits of peak hold circuit for burst | duty cycle ≥ 0.1 and repetition rate ≥ 100/s               |                                          |  |
| signals                                     | video bandwidth 4 kHz                                      | ±(3 % of measured value + 0.05 W),       |  |
|                                             |                                                            | starting from a burst width of 200 µs    |  |
|                                             | video bandwidth 200 kHz                                    | ±(3 % of measured value + 0.20 W),       |  |
|                                             |                                                            | starting from a burst width of 4 µs      |  |
|                                             | video bandwidth 600 kHz                                    | ±(7 % of measured value + 0.40 W),       |  |
|                                             |                                                            | starting from a burst width of 2 µs      |  |
|                                             | 20/s ≤ repetition rate < 100/s                             | plus ±(1.6 % of measured value + 0.15 W) |  |
|                                             | 0.001 ≤ duty cycle < 0.1                                   | plus ±0.10 W                             |  |
| Temperature coefficient                     | 25 MHz to 40 MHz                                           | 0.50 %/K (0.022 dB/K)                    |  |
|                                             | 40 MHz to 1 GHz                                            | 0.35 %/K (0.015 dB/K)                    |  |

| Load matching              |                                      |               |
|----------------------------|--------------------------------------|---------------|
| Matching measurement range |                                      |               |
| Return loss                |                                      | 0 dB to 23 dB |
| VSWR                       |                                      | > 1.15        |
| Minimum forward power      | specifications complied with ≥ 0.4 W | 0.06 W        |

| Dimensions and weight                                                 |                  |                               |  |
|-----------------------------------------------------------------------|------------------|-------------------------------|--|
| Dimensions $W \times H \times D$ 120 mm $\times$ 95 mm $\times$ 39 mm |                  |                               |  |
|                                                                       |                  | (4.72 in × 3.74 in × 1.53 in) |  |
|                                                                       | connecting cable | 1.5 m (59 in)                 |  |
| Weight                                                                |                  | 0.65 kg (1.43 lb)             |  |

 $<sup>^{\</sup>rm 12}\,$  Requires R&S $^{\rm @}$ FSH-Z144 adapter cable.

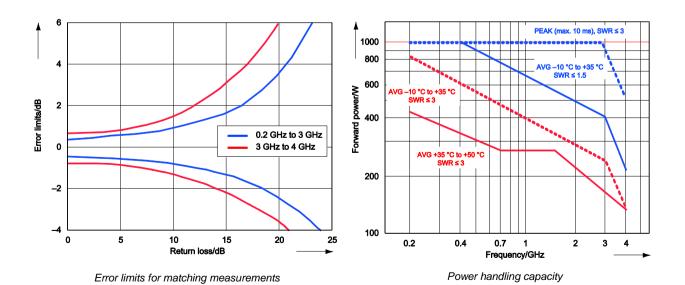
<sup>&</sup>lt;sup>13</sup> If standard is selected on the R&S®Spectrum Rider FPH.



# R&S®FSH-Z44 directional power sensor 14

| Frequency range         |                                                                | 200 MHz to 4 GHz |
|-------------------------|----------------------------------------------------------------|------------------|
| Power measurement range |                                                                | 30 mW to 300 W   |
| VSWR referenced to 50 Ω | 200 MHz to 3 GHz                                               | < 1.07           |
|                         | 3 GHz to 4 GHz                                                 | < 1.12           |
| Power handling capacity | depending on temperature and matching (see diagram on page 18) | 120 W to 1000 W  |
| Insertion loss          | 200 MHz to 1.5 GHz                                             | < 0.06 dB        |
|                         | 1.5 GHz to 4 GHz                                               | < 0.09 dB        |
| Directivity             | 200 MHz to 3 GHz                                               | > 30 dB          |
| •                       | 3 GHz to 4 GHz                                                 | > 26 dB          |

| Average power                      |                                                   |                                                   |  |
|------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| Power measurement range            | CF: ratio of peak envelope power to average power |                                                   |  |
| _                                  | CW, FM, PM, FSK, GMSK                             | 30 mW to 300 W                                    |  |
|                                    | LTE, 3GPP WCDMA, cdmaOne,                         | 30 mW to 120 W                                    |  |
|                                    | CDMA2000®, DAB, DVB-T                             |                                                   |  |
|                                    | other modulated signals                           | 30 mW to 300 W/CF                                 |  |
| Measurement uncertainty            | sine signal, +18 °C to +28 °C, no zero of         | ffset                                             |  |
|                                    | 200 MHz to 300 MHz                                | 4.0 % of measured value (0.17 dB)                 |  |
|                                    | 300 MHz to 4 GHz                                  | 3.2 % of measured value (0.14 dB)                 |  |
| Zero offset                        | after zeroing                                     | ±4 mW                                             |  |
| Range of typical measurement error | FM, PM, FSK, GMSK                                 | 0 % of measured value (0 dB)                      |  |
| with modulation                    | AM (80 %)                                         | ±3 % of measured value (±0.13 dB)                 |  |
|                                    | two CW carriers with identical power              | ±2 % of measured value (±0.09 dB)                 |  |
|                                    | π/4-DQPSK                                         | ±2 % of measured value (±0.09 dB)                 |  |
|                                    | EDGE                                              | ±0.5 % of measured value (±0.02 dB) <sup>15</sup> |  |
|                                    | cdmaOne, DAB                                      | ±1 % of measured value (±0.04 dB) 11              |  |
|                                    | 3GPP WCDMA, CDMA2000®                             | ±2 % of measured value (±0.09 dB) 11              |  |
|                                    | DVB-T                                             | ±2 % of measured value (±0.09 dB) 11              |  |
| Temperature coefficient            | 200 MHz to 300 MHz                                | 0.40 %/K (0.017 dB/K)                             |  |
|                                    | 300 MHz to 4 GHz                                  | 0.25 %/K (0.011 dB/K)                             |  |


<sup>&</sup>lt;sup>14</sup> Requires R&S<sup>®</sup>FSH-Z144 adapter cable.

 $<sup>^{15}\,</sup>$  If standard is selected on the R&S@Spectrum Rider FPH.

| Maximum peak envelope power                             |                                                                     |                                                                         |
|---------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| Power measurement range                                 |                                                                     |                                                                         |
| DAB, DVB-T, cdmaOne, CDMA2000 <sup>®</sup> , 3GPP WCDMA |                                                                     | 4 W to 300 W                                                            |
| Other signals at video bandwidth                        | 4 kHz                                                               | 0.4 W to 300 W                                                          |
|                                                         | 200 kHz                                                             | 1 W to 300 W                                                            |
|                                                         | 4 MHz                                                               | 2 W to 300 W                                                            |
| Measurement uncertainty                                 | +18 °C to +28 °C                                                    | same as for average power plus effect of peak hold circuit              |
| Error limits of peak hold circuit for burst             | duty cycle ≥ 0.1 and repetition rate ≥ 100/s                        |                                                                         |
| signals                                                 | video bandwidth 4 kHz                                               | ±(3 % of measured value + 0.05 W) starting from a burst width of 100 µs |
|                                                         | video bandwidth 200 kHz                                             | ±(3 % of measured value + 0.20 W) starting from a burst width of 4 µs   |
|                                                         | video bandwidth 4 MHz                                               | ±(7 % of measured value + 0.40 W) starting from a burst width of 1 µs   |
|                                                         | 20/s ≤ repetition rate < 100/s                                      | plus ±(1.6 % of measured value + 0.15 W)                                |
|                                                         | 0.001 ≤ duty cycle < 0.1                                            | plus ±0.10 W                                                            |
|                                                         | burst width ≥ 0.5 µs                                                | plus ±5 % of measured value                                             |
|                                                         | burst width ≥ 0.2 µs                                                | plus ±10 % of measured value                                            |
| Range of typical measurement error of                   | video bandwidth 4 MHz and standard selected on the R&S®FPH4/8/13/20 |                                                                         |
| peak hold circuit                                       | cdmaOne, DAB                                                        | ±(5 % of measured value + 0.4 W)                                        |
|                                                         | DVB-T, CDMA2000®, 3GPP WCDMA                                        | ±(15 % of measured value + 0.4 W)                                       |
| Temperature coefficient                                 | 200 MHz to 300 MHz                                                  | 0.50 %/K (0.022 dB/K)                                                   |
|                                                         | 300 MHz to 4 GHz                                                    | 0.35 %/K (0.015 dB/K)                                                   |

| Load matching              |                                      |                |
|----------------------------|--------------------------------------|----------------|
| Matching measurement range |                                      |                |
| Return loss                | 200 MHz to 3 GHz                     | 0 dB to +23 dB |
| VSWR                       | 3 GHz to 4 GHz                       | 0 dB to +20 dB |
| VSWR                       | 200 MHz to 3 GHz                     | > 1.15         |
|                            | 3 GHz to 4 GHz                       | > 1.22         |
| Minimum forward power      | specifications complied with ≥ 0.2 W | 0.03 W         |

| Dimensions and weight |                  |                                                                   |  |
|-----------------------|------------------|-------------------------------------------------------------------|--|
| Dimensions            | W×H×D            | 120 mm × 95 mm × 39 mm                                            |  |
|                       |                  | $(4.72 \text{ in} \times 3.74 \text{ in} \times 1.53 \text{ in})$ |  |
|                       | connecting cable | 1.5 m (59 in)                                                     |  |
| Weight                |                  | 0.65 kg (1.43 lb)                                                 |  |



### Equivalence of specifications for different R&S®Spectrum Rider FPH part numbers

- The specifications for part number 1321.1111.02 are equivalent to part number 1321.1111.52 and 1321.1111P01.
- The specifications for part number 1321.1111.06 are equivalent to part number 1321.1111.56 and 1321.1111P04.
- The specifications for part number 1321.1111.13 are equivalent to part number 1321.1111.63 and 1321.1111P06.
- The specifications for part number 1321.1111.26 are equivalent to part number 1321.1111.76 and 1321.1111P08.
- The specifications for part number 1321.1711.23 are equivalent to part number 1321.1711P02.
- The specifications for part number 1321.1711.36 are equivalent to part number 1321.1711P04.
- The specifications for part number 1321.1711.44 are equivalent to part number 1321.1711P06.
- The specifications for part number 1321.1711.36 are equivalent to part number 1321.1711P07.

### **Ordering information**

| Designation                                                            | Туре                                    | Order No.                   |
|------------------------------------------------------------------------|-----------------------------------------|-----------------------------|
| Handheld spectrum analyzer, 5 kHz to 2 GHz                             | R&S®Spectrum Rider FPH                  | 1321.1111.02                |
| Handheld spectrum analyzer, 5 kHz to 6 GHz                             | R&S®Spectrum Rider FPH                  | 1321.1111.06                |
| Handheld spectrum analyzer, 5 kHz to 13.6 GHz                          | R&S®Spectrum Rider FPH                  | 1321.1111.13                |
| Handheld spectrum analyzer, 5 kHz to 26.5 GHz                          | R&S®Spectrum Rider FPH                  | 1321.1111.26                |
| Handheld spectrum analyzer, 5 kHz to 44 GHz                            | R&S®Spectrum Rider FPH                  | 1321.1711.44                |
| Handheld spectrum analyzer, 5 kHz to 13.6 GHz, with tracking generator | R&S®Spectrum Rider FPH                  | 1321.1711.23                |
| Handheld spectrum analyzer, 5 kHz to 26.5 GHz, with tracking generator | R&S®Spectrum Rider FPH                  | 1321.1711.36                |
| Handheld spectrum analyzer, 5 kHz to 44 GHz, with tracking generator   | R&S®Spectrum Rider FPH                  | 1321.1711.54                |
| Accessories supplied                                                   |                                         |                             |
| Lithium-ion battery pack, USB cable, AC power supply wit               | h country specific adapters for EU, GB, | US, AUS, CH, documentation, |

quick start guide, side strap

### **Options**

| Designation                                                                             | Туре         | Order No.    |
|-----------------------------------------------------------------------------------------|--------------|--------------|
| Spectrum analyzer frequency upgrade, 2 GHz to 3 GHz <sup>16</sup>                       | R&S®FPH-B3   | 1321.0667.02 |
| Spectrum analyzer frequency upgrade, 3 GHz to 4 GHz <sup>16</sup> (requires R&S®FPH-B3) | R&S®FPH-B4   | 1321.0673.02 |
| Spectrum analyzer frequency upgrade, 6 GHz to 8 GHz <sup>17</sup>                       | R&S®FPH-B8   | 1321.0767.02 |
| Spectrum analyzer frequency upgrade, 13.6 GHz to 20 GHz <sup>18</sup>                   | R&S®FPH-B20  | 1321.0773.02 |
| Spectrum analyzer frequency upgrade, 26.5 GHz to 31 GHz <sup>19, 20</sup>               | R&S®FPH-B31  | 1321.0780.02 |
| Spectrum analyzer preamplifier, 5 kHz to 4 GHz <sup>16</sup>                            | R&S®FPH-B22  | 1321.0680.02 |
| Spectrum analyzer preamplifier, 5 kHz to 8 GHz <sup>17</sup>                            | R&S®FPH-B23  | 1321.0867.02 |
| Spectrum analyzer preamplifier, 5 kHz to 20 GHz <sup>18</sup>                           | R&S®FPH-B24  | 1321.0850.02 |
| Spectrum analyzer preamplifier, 5 kHz to 31 GHz <sup>19</sup>                           | R&S®FPH-B25  | 1321.0873.02 |
| Spectrum analyzer preamplifier, 5 kHz to 44 GHz <sup>21</sup>                           | R&S®FPH-B26  | 1334.6600.02 |
| Type N RF input connector, for model .26 (factory installed) <sup>20</sup>              | R&S®FPH-B100 | 1321.0596.02 |
| Spectrum analyzer 100 Hz frequency extension,                                           | R&S®FPH-B29  | 1334.8532.02 |
| from 5 kHz down to 100 Hz <sup>22</sup>                                                 |              |              |
| Analog modulation analysis AM, FM, ASK, FSK                                             | R&S®FPH-K7   | 1321.0696.02 |
| Power sensor support                                                                    | R&S®FPH-K9   | 1321.0709.02 |
| Interference analysis                                                                   | R&S®FPH-K15  | 1321.0715.02 |
| Signal strength mapping                                                                 | R&S®FPH-K16  | 1321.0615.02 |
| Channel power meter                                                                     | R&S®FPH-K19  | 1321.0721.02 |
| Pulse measurements, with power sensor                                                   | R&S®FPH-K29  | 1321.0738.02 |
| Receiver mode and channel scanner                                                       | R&S®FPH-K43  | 1321.0621.02 |
| Advanced gated trigger measurements                                                     | R&S®FPH-K57  | 1321.1586.02 |

<sup>&</sup>lt;sup>16</sup> Applicable only to base unit with order no. 1321.1111.02.

<sup>&</sup>lt;sup>17</sup> Applicable only to base unit with order no. 1321.1111.06.

 $<sup>^{18}</sup>$  Applicable only to base unit with order no. 1321.1111.13 and 1321.1711.23.

 $<sup>^{\</sup>rm 19}$  Applicable only to base unit with order no. 1321.1111.26 and 1321.1711.36.

<sup>&</sup>lt;sup>20</sup> R&S®FPH-B31 option is not available in combination with R&S®FPH-B100 option.

<sup>&</sup>lt;sup>21</sup> Applicable only to base unit with order no. 1321.1711.44 and 1321.1711.54.

<sup>&</sup>lt;sup>22</sup> For serial number ≥ 103100. Not applicable to R&S®Spectrum Rider FPH model .02.

### **Extras**

| Designation                                                  | Туре                    | Order No.    |
|--------------------------------------------------------------|-------------------------|--------------|
| Battery charger for R&S®HA-Z306 <sup>23</sup>                | R&S®HA-Z303             | 1321.1328.02 |
| Lithium-ion battery pack, 6.4 Ah                             | R&S®HA-Z306             | 1321.1334.02 |
| Spare power supply, incl. mains plug for EU, GB, US, AUS, CH | R&S®HA-Z301             | 1321.1386.02 |
| Car adapter                                                  | R&S®HA-Z302             | 1321.1340.02 |
| Carrying holster                                             | R&S®HA-Z322             | 1321.1370.02 |
| Rainproof carrying holster                                   | R&S®HA-Z322             | 1321.1370.03 |
| Soft carrying bag                                            | R&S®HA-Z220             | 1309.6175.00 |
| Hardcase                                                     | R&S®HA-Z321             | 1321.1357.02 |
| Hard shell protective carrying case                          | R&S <sup>®</sup> RTH-Z4 | 1326.2774.02 |
| Headphones                                                   | R&S®FSH-Z36             | 1145.5838.02 |
| Spare USB cable                                              | R&S®HA-Z211             | 1309.6169.00 |
| Spare Ethernet cable                                         | R&S®HA-Z210             | 1309.6152.00 |

### Antennas and antenna accessories

| Designation                                                | Туре         | Order No.    |
|------------------------------------------------------------|--------------|--------------|
| Yagi antenna, 1710 MHz to 1990 MHz                         | R&S®HA-Z1900 | 1328.6825.02 |
| Yagi antenna, 824 MHz to 960 MHz                           | R&S®HA-Z900  | 1328.6283.02 |
| RF cable, length: 1 m, DC to 6 GHz,                        | R&S®HA-Z901  | 3626.2757.02 |
| type N (m) – type N (m) connectors                         |              |              |
| Carrying bag,                                              | R&S®HA-Z902  | 1328.6883.02 |
| for R&S®HA-Z900 or R&S®HA-Z1900 yagi antenna               |              |              |
| Basic handheld directional antenna (antenna handle)        | R&S®HE400BC  | 4104.6000.04 |
| RF cable, for R&S®HE400BC                                  | R&S®HE400-KB | 4104.7770.04 |
| Handheld directional antenna (antenna handle)              | R&S®HE400    | 4104.6000.02 |
| Microwave handheld directional antenna (antenna handle)    | R&S®HE400MW  | 4104.6000.03 |
| Cable set, for R&S®HE400 and R&S®HE400MW                   | R&S®HE400-K  | 4104.7770.02 |
| (requires R&S®HE300USB)                                    |              |              |
| HF antenna module, 8.3 kHz to 30 MHz                       | R&S®HE400HF  | 4104.8002.02 |
| VHF antenna module, 20 MHz to 200 MHz                      | R&S®HE400VHF | 4104.8202.02 |
| UWB antenna module, 30 MHz to 6 GHz                        | R&S®HE400UWB | 4104.6900.02 |
| Log-periodic antenna module, 450 MHz to 8 GHz              | R&S®HE400LP  | 4104.8402.02 |
| Cellular antenna module, 700 MHz to 2500 MHz               | R&S®HE400CEL | 4104.7306.02 |
| S band and C band antenna module, 1.7 GHz to 6 GHz         | R&S®HE400SCB | 4104.7606.02 |
| SHF antenna module, 5 GHz to 20 GHz (with R&S®HE400BC      | R&S®HE400SHF | 4104.8602.02 |
| and R&S®HE400MW antenna handle)                            |              |              |
| USB adapter, for R&S®HE400 handheld directional antenna    | R&S®HE300USB | 4080.9440.02 |
| Log-periodic OEM antenna, 700 MHz to 4 GHz                 | R&S®HA-Z350  | 1321.1405.02 |
| Handheld directional antenna, with preamplifier            | R&S®HE800-PA | 4115.6006.02 |
| Transport case, for R&S®HE800-PA                           | R&S®HE800Z1  | 4115.7660.02 |
| RF cable, length: 1 m, DC to 8 GHz, armored,               | R&S®FSH-Z320 | 1309.6600.00 |
| type N (m) – type N (f) connectors                         |              |              |
| RF cable, length: 3 m, DC to 8 GHz, armored,               | R&S®FSH-Z321 | 1309.6617.00 |
| type N (m) – type N (f) connectors                         |              |              |
| GPS receiver, for R&S®Spectrum Rider FPH                   | R&S®HA-Z340  | 1321.1392.02 |
| Portable EMF measurement system, hard case                 | R&S®TS-EMF   | 1158.9295.05 |
| Isotropic antenna, 30 MHz to 3 GHz for R&S®TS-EMF          | R&S®TSEMF-B1 | 1074.5719.02 |
| Isotropic antenna, 700 MHz to 6 GHz for R&S®TS-EMF         | R&S®TSEMF-B2 | 1074.5702.02 |
| Isotropic antenna, 9 kHz to 200 MHz for R&S®TS-EMF         | R&S®TSEMF-B3 | 1074.5690.02 |
| Converter cable                                            | R&S®TSEMF-CV | 1158.9250.02 |
| Matching pad, 50/75 Ω, L section                           | R&S®RAM      | 0358.5414.02 |
| Matching pad, 50/75 $\Omega$ , series resistor 25 $\Omega$ | R&S®RAZ      | 0358.5714.02 |
| Matching pad, 50/75 Ω, L section, type N – BNC             | R&S®FSH-Z38  | 1300.7740.02 |
| Adapter type N (m) – BNC (f)                               |              | 0118.2812.00 |
| Adapter type N (m) – type N (m)                            |              | 0092.6581.00 |
| Adapter type N (m) – SMA (f)                               |              | 4012.5837.00 |
| Adapter type N (m) – 7/16 (f)                              |              | 3530.6646.00 |
| Adapter type N (m) – 7/16 (m)                              |              | 3530.6630.00 |
| Adapter type N (m) – FME (f)                               |              | 4048.9790.00 |
| Adapter BNC (m) – banana (f)                               |              | 0017.6742.00 |

<sup>&</sup>lt;sup>23</sup> The battery charger is dedicated for charging an additional battery outside the instrument. The battery can be charged via the instrument as well.

| Designation                                                                  | Туре                     | Order No.    |
|------------------------------------------------------------------------------|--------------------------|--------------|
| Attenuator, 50 W, 20 dB, 50 Ω, DC to 6 GHz,                                  | R&S®RDL50                | 1035.1700.52 |
| type N (f) – type N (m)                                                      |                          |              |
| Attenuator, 100 W, 20 dB, 50 Ω, DC to 2 GHz,                                 | R&S®RBU100               | 1073.8495.20 |
| type N (f) – type N (m)                                                      |                          |              |
| Attenuator, 100 W, 30 dB, 50 Ω, DC to 2 GHz,                                 | R&S®RBU100               | 1073.8495.30 |
| type N (f) – type N (m)                                                      |                          |              |
| Compact probe set, for E and H near-field measurements,                      | R&S®HZ-15                | 1147.2736.02 |
| 30 MHz to 3 GHz                                                              |                          |              |
| Near-field probe set, H field                                                | R&S®HZ-17                | 1339.4141.02 |
| Preamplifier (3 GHz, 20 dB), power adapter (100 V to 230 V),                 | R&S®HZ-16                | 1147.2720.02 |
| for R&S®HZ-15                                                                |                          |              |
| Omnidirectional antenna, for circular right-hand polarization,               | R&S®AC004R1              | 0749.3000.03 |
| 18 GHz to 26.5 GHz                                                           |                          |              |
| Omnidirectional antenna, for circular left-hand polarization,                | R&S®AC004L1              | 4078.4000.02 |
| 18 GHz to 26.5 GHz                                                           |                          |              |
| Omnidirectional antenna, for circular right-hand polarization,               | R&S®AC004R2              | 0749.3251.03 |
| 26.5 GHz to 40 GHz                                                           |                          |              |
| Omnidirectional antenna, for circular left-hand polarization,                | R&S®AC004L2              | 4078.5006.02 |
| 26.5 GHz to 40 GHz                                                           |                          |              |
| Broadband omnidirectional antenna, 800 MHz to 26.5 GHz                       | R&S®HF907OM              | 4070.3279.02 |
| Standard gain horn antenna, 26 GHz to 40 GHz,                                | R&S®FH-SG-40             | 3629.2393.02 |
| mid band gain 20 dB, WR 28                                                   |                          |              |
| Standard gain horn antenna adapter                                           | R&S®HA-Z370              | 1334.8432.02 |
| Mast and tripod adapter                                                      | R&S®KM011Z8              | 4090.4006.02 |
| Wooden tripod                                                                | R&S®HZ-1                 | 0837.2310.02 |
| Test port cable, 0 Hz to 26.5 GHz,                                           | R&S®ZV-Z93               | 1301.7595.25 |
| 3.5 mm (f) to 3.5 mm (m), length: 635 mm                                     |                          |              |
| Test port cable, 0 Hz to 26.5 GHz,                                           | R&S®ZV-Z93               | 1301.7595.38 |
| 3.5 mm (f) to 3.5 mm (m), length: 965 mm                                     |                          |              |
| Test port cable, 0 Hz to 26.5 GHz,                                           | R&S®ZV-Z193              | 1306.4520.24 |
| 3.5 mm (f) to 3.5 mm (m), length: 610 mm                                     | 2002/12/00               | 1000 1000 00 |
| Test port cable, 0 Hz to 26.5 GHz,                                           | R&S <sup>®</sup> ZV-Z193 | 1306.4520.36 |
| 3.5 mm (f) to 3.5 mm (m), length: 914 mm                                     | D 0 0 0 7 1 7 1 0 0      | 4000 4500 00 |
| Test port cable, 0 Hz to 26.5 GHz,                                           | R&S®ZV-Z193              | 1306.4520.60 |
| 3.5 mm (f) to 3.5 mm (m), length: 1524 mm                                    | D 9 C 8 7 1 7 2 5        | 4204 7000 05 |
| Test port cable, 0 Hz to 40 GHz,                                             | R&S®ZV-Z95               | 1301.7608.25 |
| 2.92 mm (f) to 2.92 mm (m), length: 635 mm  Test port cable, 0 Hz to 40 GHz, | R&S®ZV-Z95               | 1201 7609 29 |
| 2.92 mm (f) to 2.92 mm (m), length: 965 mm                                   | NOO 27-780               | 1301.7608.38 |
| Test port cable, 0 Hz to 40 GHz,                                             | R&S®ZV-Z195              | 1306.4536.24 |
| 2.92 mm (f) to 2.92 mm (m), length: 610 mm                                   | 1143 24-2193             | 1300.4330.24 |
| Test port cable, 0 Hz to 40 GHz,                                             | R&S®ZV-Z195              | 1306.4536.36 |
| 2.92 mm (f) to 2.92 mm (m), length: 914 mm                                   | 1.00 21 2100             | 1300.4000.00 |
|                                                                              |                          |              |

# R&S®NRP-Zxx power sensors supported by the R&S®Spectrum Rider FPH <sup>24</sup>

| • • • • • • • • • • • • • • • • • • • •                           | · · · · · · · · · · · · · · · · · · · |                    |
|-------------------------------------------------------------------|---------------------------------------|--------------------|
| Designation                                                       | Туре                                  | Order No.          |
| Directional power sensor, 25 MHz to 1 GHz                         | R&S®FSH-Z14                           | 1120.6001.02       |
| Directional power sensor, 200 MHz to 4 GHz                        | R&S®FSH-Z44                           | 1165.2305.02       |
| Universal power sensor, 10 MHz to 8 GHz, 100 mW, two-path         | R&S®NRP-Z211                          | 1417.0409.02       |
| Universal power sensor, 10 MHz to 18 GHz, 100 mW, two-path        | R&S®NRP-Z221                          | 1417.0309.02       |
| Wideband power sensor, 50 MHz to 18 GHz, 100 mW                   | R&S®NRP-Z81                           | 1137.9009.02       |
| Wideband power sensor, 50 MHz to 40 GHz, 100 mW (2.92 mm)         | R&S®NRP-Z85                           | 1411.7501.02       |
| Wideband power sensor, 50 MHz to 40 GHz, 100 mW (2.40 mm)         | R&S®NRP-Z86                           | 1417.0109.40       |
| Wideband power sensor, 50 MHz to 44 GHz, 100 mW (2.40 mm)         | R&S®NRP-Z86                           | 1417.0109.44       |
| Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 8 GHz  | R&S®NRP8S                             | 1419.0006.02       |
| Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 18 GHz | R&S®NRP18S                            | 1419.0029.02       |
| Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 33 GHz | R&S®NRP33S                            | 1419.0064.02       |
| Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 40 GHz | R&S®NRP40S                            | 1419.0041.02       |
| Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 50 GHz | R&S®NRP50S                            | 1419.0087.02       |
| Thermal power sensor, 300 nW to 100 mW, DC to 18 GHz              | R&S®NRP18T                            | 1424.6115.02       |
| Thermal power sensor, 300 nW to 100 mW, DC to 33 GHz              | R&S®NRP33T                            | 1424.6138.02       |
| Thermal power sensor, 300 nW to 100 mW, DC to 40 GHz              | R&S®NRP40T                            | 1424.6150.02       |
| Thermal power sensor, 300 nW to 100 mW, DC to 50 GHz              | R&S®NRP50T                            | 1424.6173.02       |
| Thermal power sensor, 300 nW to 100 mW, DC to 67 GHz              | R&S®NRP67T                            | 1424.6196.02       |
| Thermal power sensor, 300 nW to 100 mW, DC to 110 GHz             | R&S®NRP110T                           | 1424.6215.02       |
| Average power sensor, 100 pW to 200 mW, 8 kHz to 6 GHz            | R&S®NRP6A                             | 1424.6796.02       |
| Average power sensor, 100 pW to 200 mW, 8 kHz to 18 GHz           | R&S®NRP18A                            | 1424.6815.02       |
| R&S®NRP-Zxx power sensors require the following adapter ca        | able for operation on the R&S®S       | Spectrum Rider FPH |
| USB adapter cable, for R&S®FSH-Z14/R&S®FSH-Z44                    | R&S®FSH-Z144                          | 1145.5909.02       |
| power sensors                                                     |                                       |                    |
| USB adapter cable (passive), length: 2 m,                         | R&S®NRP-Z4                            | 1146.8001.02       |
| to connect R&S®NRP-Zxx S/SN power sensors to the                  |                                       |                    |
| R&S®Spectrum Rider FPH                                            |                                       |                    |
| R&S®NRP power sensors require the following adapter cable         | for operation on the R&S®Spec         | trum Rider FPH     |
| USB interface cable, length: 1.5 m,                               | R&S®NRP-ZKU                           | 1419.0658.03       |
| to connect R&S®NRP sensors to the R&S®Spectrum Rider FPH          |                                       |                    |
|                                                                   |                                       |                    |

# Optical power sensors and accessories

| Designation                                        | Туре        | Order No.    |
|----------------------------------------------------|-------------|--------------|
| OEM USB, optical power meter (Germanium)           | R&S®HA-Z360 | 1334.5162.00 |
| OEM USB, optical power meter (filtered InGaAs)     | R&S®HA-Z361 | 1334.5179.00 |
| SC adapter, for optical power meter                | R&S®HA-Z362 | 1334.5185.00 |
| LC adapter, for optical power meter                | R&S®HA-Z363 | 1334.5191.00 |
| 2.5 mm universal adapter, for optical power meter  | R&S®HA-Z364 | 1334.5204.00 |
| 1.25 mm universal adapter, for optical power meter | R&S®HA-Z365 | 1334.5210.00 |
| Patch cord SC-LC SM, SX, length: 1 m               | R&S®HA-Z366 | 1334.5227.00 |
| Patch cord SC-SC SM, SX, length: 1 m               | R&S®HA-Z367 | 1334.5233.00 |

<sup>&</sup>lt;sup>24</sup> For average power measurements only.

### **Service options**

| Warranty                                                          |                      |                               |
|-------------------------------------------------------------------|----------------------|-------------------------------|
| Base unit                                                         |                      | 3 years                       |
| All other items <sup>25</sup>                                     |                      | 1 year                        |
| Service options                                                   |                      |                               |
| Extended warranty, one year                                       | R&S®WE1              | Please contact your local     |
| Extended warranty, two years                                      | R&S®WE2              | Rohde & Schwarz sales office. |
| Extended warranty with calibration coverage, one year             | R&S®CW1              |                               |
| Extended warranty with calibration coverage, two years            | R&S®CW2              |                               |
| Extended warranty with accredited calibration coverage, one year  | R&S®AW1              |                               |
| Extended warranty with accredited calibration coverage, two years | R&S <sup>®</sup> AW2 |                               |

#### Extended warranty with a term of one and two years (WE1 and WE2)

Repairs carried out during the contract term are free of charge <sup>26</sup>. Necessary calibration and adjustments carried out during repairs are also covered.

#### Extended warranty with calibration coverage (CW1 and CW2)

Enhance your extended warranty by adding calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated, inspected and maintained during the term of the contract. It includes all repairs <sup>26</sup> and calibration at the recommended intervals as well as any calibration carried out during repairs or option upgrades.

#### Extended warranty with accredited calibration (AW1 and AW2)

Enhance your extended warranty by adding accredited calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated under accreditation, inspected and maintained during the term of the contract. It includes all repairs <sup>26</sup> and accredited calibration at the recommended intervals as well as any accredited calibration carried out during repairs or option upgrades.

CDMA2000® is a registered trademark of the Telecommunications Industry Association (TIA-USA).

<sup>&</sup>lt;sup>25</sup> For options that are installed, the remaining base unit warranty applies if longer than 1 year. Exception: all batteries have a 1 year warranty.

<sup>&</sup>lt;sup>26</sup> Excluding defects caused by incorrect operation or handling and force majeure. Wear-and-tear parts are not included.

#### Service that adds value

- Local and personalized
   Customized and flexible
   Uncompromising quality
   Long-term dependability

#### Rohde & Schwarz

The Rohde&Schwarz technology group is among the trailblazers when it comes to paving the way for a safer and connected world with its leading solutions in test&measurement, technology systems, and networks&cybersecurity. Founded more than 85 years ago, the group is a reliable partner for industry and government customers around the globe. The independent company is headquartered in Munich, Germany and has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

#### Sustainable product design

- ► Environmental compatibility and eco-footprint
- ► Energy efficiency and low emissions
- ► Longevity and optimized total cost of ownership

Certified Quality Management ISO 9001

Certified Environmental Management ISO 14001

#### Rohde & Schwarz training

www.training.rohde-schwarz.com

#### Rohde & Schwarz customer support

www.rohde-schwarz.com/support





Data without tolerance limits is not binding | Subject to change © 2015 - 2021 Rohde&Schwarz GmbH&Co. KG | 81671 Munich, Germany